Abstract

In this paper, a single phase lag model on heat mass transfer in application of food drying has been developed. The present model is a generalization of the diffusion model. The whole analysis is presented in nondimensional form. The effects of shape parameter, relaxation time parameters, Luikov number, Kirpichev number, Biot number, Kossovich number, and Predvoditelev number on heat and mass transfer are discussed in detail. For experimental validation, we have taken examples of banana, mango, and cassava. Our simulations show that the present model is more suitable than diffusion model. The present model is in good agreement with experimental data. The moisture potential of slab food is higher than cylindrical food and moisture potential of cylindrical food is higher than spherical food for boundary condition of first, second, and third kinds. It has been observed that the moisture potential is highest in boundary condition of second kind and lowest in boundary condition of the third kind while in between in boundary condition of the first kind. We conclude that for complete drying, the spherical shape foods takes lesser time than cylindrical shape and cylindrical shape takes lesser time than slab shape.

References

1.
Younsi
,
R.
,
Kocaefe
,
D.
,
Poncsak
,
S.
, and
Kocaefe
,
Y.
,
2007
, “
Computational Modelling of Heat and Mass Transfer During the High-Temperature Heat Treatment of Wood
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1424
1431
.10.1016/j.applthermaleng.2006.10.025
2.
Cepitis
,
J.
,
2000
, “
A Mathematical Model of Paper Drying
,”
Math. Modell. Anal.
,
5
(
1
), pp.
26
31
.10.3846/13926292.2000.9637125
3.
Ong
,
T. C.
,
2015
, “
Modelling and Simulation of Drying Process for Ceramic Membrane Fabrication
,” Ph.D. dissertation, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia.
4.
Künzel
,
H. M.
,
1995
,
Simultaneous Heat and Moisture Transport in Building Components: One-and Two-Dimensional Calculation Using Simple Parameters
,
IRB-Verlag
,
Stuttgart, Germany
.
5.
Johann
,
G.
,
Silva
,
E. A.
,
Lima
,
O. C.
, and
Pereira
,
N. C.
,
2014
, “
Mathematical Modeling of a Convective Textile Drying Process
,”
Braz. J. Chem. Eng.
,
31
(
4
), pp.
959
965
.10.1590/0104-6632.20140314s00002685
6.
Hauber
,
R. J.
,
Bemiller
,
J. N.
, and
Fannon
,
J. E.
,
1992
, “
Swelling and Reactivity of Maize Starch Granules
,”
Starch‐Stärke
,
44
(
9
), pp.
323
327
.10.1002/star.19920440902
7.
Broadhead
,
J.
,
Edmond Rouan
,
S. K.
, and
Rhodes
,
C. T.
,
1992
, “
The Spray Drying of Pharmaceuticals
,”
Drug Dev. Ind. Pharm.
,
18
(
11–12
), pp.
1169
1206
.10.3109/03639049209046327
8.
Ohta
,
N.
,
2002
, “
Electric Field Effects on Photochemical Dynamics in Solid Films
,”
Bull. Chem. Soc. Jpn.
,
75
(
8
), pp.
1637
1655
.10.1246/bcsj.75.1637
9.
Can
,
A.
,
2007
, “
An Analytical Method for Determining the Temperature Dependent Moisture Diffusivities of Pumpkin Seeds During Drying Process
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
682
687
.10.1016/j.applthermaleng.2006.04.030
10.
Mabrouk
,
S. B.
,
Khiari
,
B.
, and
Sassi
,
M.
,
2006
, “
Modelling of Heat and Mass Transfer in a Tunnel Dryer
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2110
2118
.10.1016/j.applthermaleng.2006.04.007
11.
Fryer
,
P. J.
, and
Robbins
,
P. T.
,
2005
, “
Heat Transfer in Food Processing: Ensuring Product Quality and Safety
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2499
2510
.10.1016/j.applthermaleng.2004.11.021
12.
Mujumdar
,
A. S.
, ed.,
1995
,
Handbook of Industrial Drying, Revised and Expanded
, Vol.
2
,
Marcel Dekker
,
New York
.
13.
Balaban
,
M.
,
1990
, “
Effect of Volume Change in Foods on the Temperature and Moisture Content Predictions of Simultaneous Heat and Moisture Transfer Models
,”
J. Food Process Eng.
,
12
(
1
), pp.
67
88
.10.1111/j.1745-4530.1990.tb00041.x
14.
Wang
,
N.
, and
Brennan
,
J. G.
,
1995
, “
A Mathematical Model of Simultaneous Heat and Moisture Transfer During Drying of Potato
,”
J. Food Eng.
,
24
(
1
), pp.
47
60
.10.1016/0260-8774(94)P1607-Y
15.
Maroulis
,
Z. B.
,
Kiranoudis
,
C. T.
, and
Marinos-Kouris
,
D.
,
1995
, “
Heat and Mass Transfer Modeling in Air Drying of Foods
,”
J. Food Eng.
,
26
(
1
), pp.
113
130
.10.1016/0260-8774(94)00040-G
16.
Madamba
,
P. S.
,
Driscoll
,
R. H.
, and
Buckle
,
K. A.
,
1996
, “
The Thin-Layer Drying Characteristics of Garlic Slices
,”
J. Food Eng.
,
29
(
1
), pp.
75
97
.10.1016/0260-8774(95)00062-3
17.
Aversa
,
M.
,
Curcio
,
S.
,
Calabro
,
V.
, and
Iorio
,
G.
,
2007
, “
An Analysis of the Transport Phenomena Occurring During Food Drying Process
,”
J. Food Eng.
,
78
(
3
), pp.
922
932
.10.1016/j.jfoodeng.2005.12.005
18.
Ratti
,
C.
,
2001
, “
Hot Air and Freeze-Drying of High-Value Foods: A Review
,”
J. Food Eng.
,
49
(
4
), pp.
311
319
.10.1016/S0260-8774(00)00228-4
19.
Pilatti
,
D.
,
Johann
,
G.
,
Palú
,
F.
, and
da Silva
,
E. A.
,
2016
, “
Evaluation of a Concentrated Parameters Mathematical Model Applied to Drying of Yerba Mate Leaves With Variable Mass Transfer Coefficient
,”
Appl. Therm. Eng.
,
105
, pp.
483
489
.10.1016/j.applthermaleng.2016.02.139
20.
Pavón-Melendez
,
G. H. J. A.
,
Hernández
,
J. A.
,
Salgado
,
M. A.
, and
Garcıa
,
M. A.
,
2002
, “
Dimensionless Analysis of the Simultaneous Heat and Mass Transfer in Food Drying
,”
J. Food Eng.
,
51
(
4
), pp.
347
353
.10.1016/S0260-8774(01)00077-2
21.
Luikov
,
A. V.
,
1964
, “
Heat and Mass Transfer in Capillary-Porous Bodies
,”
Advances in Heat Transfer
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
123
184
.
22.
Rai
,
K. N.
, and
Pandey
,
R. N.
,
1976
, “
Boundary Layer Approach to Heat and Mass Transfer in Porous Bodies of Cylindrical Geometry
,”
Int. J. Eng. Sci.
,
14
(
11
), pp.
975
990
.10.1016/0020-7225(76)90093-8
23.
Rai
,
K. N.
, and
Pandey
,
R. N.
,
1982
, “
Heat and Mass Transfer in Porous Bodies of Simple Geometry
,”
Indian J. Pure Appl. Math.
,
13
(
1
), pp.
96
109
.
24.
Rai
,
K. N.
, and
Pandey
,
R. N.
,
1983
, “
Heat and Mass Transfer in an Infinite Cylindrical Porous Body Under the Generalized Boundary Conditions
,”
J. Sci. Res.
,
13
(
2
), pp.
193
207
.
25.
Rai
,
K. N.
, and
Pandey
,
R. N.
,
1984
, “
Molecular and Molar Transfer of Heat and Mass in a Capillary Porous Body
,”
J. Sci. Res.
,
34
(
2
), pp.
91
129
.
26.
Ruiz-López
,
I. I.
,
Córdova
,
A. V.
,
Rodrı́guez-Jimenes
,
G. C.
, and
Garcı́a-Alvarado
,
M. A.
,
2004
, “
Moisture and Temperature Evolution During Food Drying: Effect of Variable Properties
,”
J. Food Eng.
,
63
(
1
), pp.
117
124
.10.1016/S0260-8774(03)00290-5
27.
Ruiz-López
,
I. I.
,
Ruiz-Espinosa
,
H.
,
Arellanes-Lozada
,
P.
,
Bárcenas-Pozos
,
M. E.
, and
García-Alvarado
,
M. A.
,
2012
, “
Analytical Model for Variable Moisture Diffusivity Estimation and Drying Simulation of Shrinkable Food Products
,”
J. Food Eng.
,
108
(
3
), pp.
427
435
.10.1016/j.jfoodeng.2011.08.025
28.
Curcio
,
S.
,
Aversa
,
M.
,
Calabrò
,
V.
, and
Iorio
,
G.
,
2008
, “
Simulation of Food Drying: FEM Analysis and Experimental Validation
,”
J. Food Eng.
,
87
(
4
), pp.
541
553
.10.1016/j.jfoodeng.2008.01.016
29.
Yesilata
,
B.
, and
Aktacir
,
M. A.
,
2009
, “
A Simple Moisture Transfer Model for Drying of Sliced Foods
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
748
752
.10.1016/j.applthermaleng.2008.03.048
30.
Koua
,
K. B.
,
Fassinou
,
W. F.
,
Gbaha
,
P.
, and
Toure
,
S.
,
2009
, “
Mathematical Modelling of the Thin Layer Solar Drying of Banana, Mango and Cassava
,”
Energy
,
34
(
10
), pp.
1594
1602
.10.1016/j.energy.2009.07.005
31.
Ramos
,
I. N.
,
Brandão
,
T. R.
, and
Silva
,
C. L.
,
2015
, “
Simulation of Solar Drying of Grapes Using an Integrated Heat and Mass Transfer Model
,”
Renewable Energy
,
81
, pp.
896
902
.10.1016/j.renene.2015.04.011
32.
Ramos
,
B.
,
Miller
,
F. A.
,
Brandão
,
T. R.
,
Teixeira
,
P.
, and
Silva
,
C. L.
,
2013
, “
Fresh Fruits and Vegetables—An Overview on Applied Methodologies to Improve Its Quality and Safety
,”
Innovative Food Sci. Emerging Technol.
,
20
, pp.
1
15
.10.1016/j.ifset.2013.07.002
33.
Gil
,
M. M.
,
Miller
,
F. A.
,
Brandão
,
T. R.
, and
Silva
,
C. L.
,
2017
, “
Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms' Inactivation: Tools for Model Comparison and Adequacy in Data Fitting
,”
Food Bioprocess Technol.
,
10
(
12
), pp.
2208
2225
.10.1007/s11947-017-1989-x
34.
Upadhyay
,
S.
, and
Rai
,
K. N.
,
2019
, “
A New Iterative Least Square Chebyshev Wavelet Galerkin FEM Applied to Dual Phase Lag Model on Microwave Drying of Foods
,”
Int. J. Therm. Sci.
,
139
, pp.
217
231
.10.1016/j.ijthermalsci.2019.01.035
35.
Upadhyay
,
S.
,
Yadav
,
S.
, and
Rai
,
K. N.
,
2019
, “
Modelling and Simulation of a Moving Boundary Problem Arising During Immersion Frying of Foods
,”
Natl. Acad. Sci. Lett.
,
42
(
1
), pp.
59
69
.10.1007/s40009-018-0719-x
36.
Upadhyay
,
S.
,
Singh
,
V. K.
, and
Rai
,
K. N.
,
2019
, “
Finite Difference Legendre Wavelet Collocation Method Applied to the Study of Heat Mass Transfer During Food Drying
,”
Heat Transfer—Asian Res.
,
48
(
7
), pp.
3079
3100
.10.1002/htj.21531
37.
Farkas
,
B. E.
,
Singh
,
R. P.
, and
Rumsey
,
T. R.
,
1996
, “
Modeling Heat and Mass Transfer in Immersion Frying—I: Model Development
,”
J. Food Eng.
,
29
(
2
), pp.
211
226
.10.1016/0260-8774(95)00072-0
38.
Cattaneo
,
C.
,
1958
,
Sur Une Forme de L'equation de la Chaleur Eliminant la Paradoxe D'une Propagation Instantantee
, Gauthier-Villars, Paris, Vol.
247
, pp.
431
433
.
39.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de L'equation de la Chaleur
,”
C. R. Acad. Sci.
,
246
, pp.
3154
3155
.
40.
Antaki
,
P. J.
,
2005
, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
189
193
.10.1115/1.1844540
41.
Tripathi
,
G.
,
Shukla
,
K. N.
, and
Pandey
,
R. N.
,
1977
, “
Intensive Drying of an Infinite Plate
,”
Int. J. Heat Mass Transfer
,
20
(
5
), pp.
451
458
.10.1016/0017-9310(77)90091-6
42.
García-Alvarado
,
M. A.
,
Pacheco-Aguirre
,
F. M.
, and
Ruiz-López
,
I. I.
,
2014
, “
Analytical Solution of Simultaneous Heat and Mass Transfer Equations During Food Drying
,”
J. Food Eng.
,
142
, pp.
39
45
.10.1016/j.jfoodeng.2014.06.001
43.
Aprajeeta
,
J.
,
Gopirajah
,
R.
, and
Anandharamakrishnan
,
C.
,
2015
, “
Shrinkage and Porosity Effects on Heat and Mass Transfer During Potato Drying
,”
J. Food Eng.
,
144
, pp.
119
128
.10.1016/j.jfoodeng.2014.08.004
44.
Chen
,
Z. G.
,
Guo
,
X. Y.
, and
Wu
,
T.
,
2016
, “
A Novel Dehydration Technique for Carrot Slices Implementing Ultrasound and Vacuum Drying Methods
,”
Ultrason. Sonochem.
,
30
, pp.
28
34
.10.1016/j.ultsonch.2015.11.026
45.
Kumar
,
C.
,
Joardder
,
M. U. H.
,
Farrell
,
T. W.
,
Millar
,
G. J.
, and
Karim
,
M. A.
,
2016
, “
Mathematical Model for Intermittent Microwave Convective Drying of Food Materials
,”
Drying Technol.
,
34
(
8
), pp.
962
973
.10.1080/07373937.2015.1087408
46.
Huang
,
S.
,
Vignolles
,
M. L.
,
Chen
,
X. D.
,
Le Loir
,
Y.
,
Jan
,
G.
,
Schuck
,
P.
, and
Jeantet
,
R.
,
2017
, “
Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review
,”
Trends Food Sci. Technol.
,
63
, pp.
1
17
.10.1016/j.tifs.2017.02.007
47.
Lisboa
,
H. M.
,
Duarte
,
M. E.
, and
Cavalcanti-Mata
,
M. E.
,
2018
, “
Modeling of Food Drying Processes in Industrial Spray Dryers
,”
Food Bioprod. Process.
,
107
, pp.
49
60
.10.1016/j.fbp.2017.09.006
48.
Aghbashlo
,
M.
,
2015
, “
A Proposed Mathematical Model for Energy Analysis of an Infrared (IR) Drying Process
,”
Int. J. Energy
,
18
(
4
), pp.
480
500
.10.1504/IJEX.2015.072912
49.
Erbay
,
Z.
, and
Icier
,
F.
,
2010
, “
A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results
,”
Crit. Rev. Food Sci. Nutr.
,
50
(
5
), pp.
441
464
.10.1080/10408390802437063
50.
Shahari
,
N. A.
,
2012
, “
Mathematical Modelling of Drying Food Products: Application to Tropical Fruits
,” Ph.D. dissertation,
University of Nottingham
,
Nottingham, UK
.
51.
Jaluria
,
Y.
,
2011
,
Computer Methods for Engineering With MATLAB Applications
,
Taylor & Francis
,
Boca Raton, FL
.
You do not currently have access to this content.