Abstract

An experimental apparatus and a computational routine were developed and implemented in order to obtain the sessile drop images and the contact angle measurement for different fluids and surface conditions. Moreover, experimental results of heat transfer coefficients (HTCs) during pool boiling of de-ionized water (DI water), Al2O3-DI water- and Fe2O3-DI water-based nanofluids are presented in this paper. Based on these results, the effect of surface roughness and nanofluid concentration on the surface wettability, contact angle, and the heat transfer coefficient was analyzed. The experiments were performed on copper heating surfaces with different roughness values (corresponding to a smooth surface or a rough surface). The coated surfaces were produced by the nanofluid pool boiling process at two different volumetric concentrations. All surfaces were subjected to metallographic, wettability and roughness tests. For smooth surfaces, in comparison to DI water, heat transfer enhancement up to 60% is observed for both nanofluids at low concentrations. As the concentration of the nanofluid increases, the surface roughness increases and the contact angle decreases, characterizing a hydrophilic behavior. The analyses indicate that the boiling process of nanofluid leads to the deposition of a coating layer on the surface, which influences the heat transfer performance in two-phase systems.

References

1.
Leong
,
K. C.
,
Ho
,
J. Y.
, and
Wong
,
K. K.
,
2017
, “
A Critical Review of Pool and Flow Boiling Heat Transfer of Dielectric Fluids on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
112
, pp.
999
1019
.10.1016/j.applthermaleng.2016.10.138
2.
Alirezaie
,
A.
,
Hajmohammad
,
M. H.
,
Alipour
,
A.
, and
Salari
,
M.
,
2018
, “
Do Nanofluids Affect the Future of Heat Transfer? A Benchmark Study on the Efficiency of Nanofluids
,”
Energy
,
157
, pp.
979
989
.10.1016/j.energy.2018.05.060
3.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
, pp.
1
16
.10.1186/1556-276X-6-280
4.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis
,
London
, p.
112
.
5.
Manetti
,
L. L.
,
Stephen
,
M. T.
,
Beck
,
P. A.
, and
Cardoso
,
E. M.
,
2017
, “
Evaluation of the Heat Transfer Enhancement During Pool Boiling Using Low Concentrations of Al2O3-Water Based Nanofluid
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
191
200
.10.1016/j.expthermflusci.2017.04.018
6.
Sajid
,
M. U.
, and
Ali
,
H. M.
,
2018
, “
Thermal Conductivity of Hybrid Nanofluids: A Critical Review
,”
Int. J. Heat Mass Transfer
,
126
, pp.
211
234
.10.1016/j.ijheatmasstransfer.2018.05.021
7.
Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoğlu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.10.1007/s10404-009-0524-4
8.
Eastman, J., Choi, U., Li, S., Thompson, L., and Lee, S., 1996, “Enhanced Thermal Conductivity Through the Development of Nanofluids,”
MRS Proc.
, 457, p.
3
.10.1557/PROC-457-3
9.
Park
,
J.
,
Kim
,
D.
, and
Lee
,
C.
,
2018
, “
Contact Angle Control of Sessile Drops on a Tensioned Web
,”
Appl. Surf. Sci.
,
437
, pp.
329
335
.10.1016/j.apsusc.2017.12.152
10.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
, p.
121009
.10.1115/1.3220144
11.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
12.
Bizi-Bandoki
,
P.
,
Benayoun
,
S.
,
Valette
,
S.
,
Beaugiraud
,
B.
, and
Audouard
,
E.
,
2011
, “
Modifications of Roughness and Wettability Properties of Metals Induced by Femtosecond Laser Treatment
,”
Appl. Surf. Sci.
,
257
(
12
), pp.
5213
5218
.10.1016/j.apsusc.2010.12.089
13.
Xiao
,
R.
,
Maroo
,
S. C.
, and
Wang
,
E. N.
,
2013
, “
Negative Pressures in Nanoporous Membranes for Thin Film Evaporation
,”
Appl. Phys. Lett.
,
102
(
12
), pp.
123103
123105
.10.1063/1.4798243
14.
Ćoso
,
D.
,
Srinivasan
,
V.
,
Lu
,
M.-C.
,
Chang
,
J.-Y.
, and
Majumdar
,
A.
,
2012
, “
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
,”
ASME J. Heat Transfer
,
134
, p.
101501
.10.1115/1.4006106
15.
Kiyomura
,
I. S.
,
Manetti
,
L. L.
,
Cunha
,
A. P.
,
Ribatski
,
G.
, and
Cardoso
,
E. M.
,
2017
, “
An Analysis of the Effects of Nanoparticles Deposition on Characteristics of the Heating Surface and on Pool Boiling of Water
,”
Int. J. Heat Mass Transfer
,
106
, pp.
666
674
.10.1016/j.ijheatmasstransfer.2016.09.051
16.
Prakash
,
C. G.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nanostructured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4028
4043
.10.1016/j.rser.2017.10.069
17.
Souza
,
R. R.
,
Passos
,
J. C.
, and
Cardoso
,
E. M.
,
2014
, “
Influence of Nanoparticle Size and Gap Size on Nucleate Boiling Using HFE7100
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
195
201
.10.1016/j.expthermflusci.2013.11.001
18.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
,
Yoo
,
J.
, and
You
,
S. M.
,
2010
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
972
981
.10.1016/j.ijheatmasstransfer.2009.11.018
19.
Kole
,
M.
, and
Dey
,
T. K.
,
2010
, “
Thermal Conductivity and Viscosity of Al2O3 Nanofluid Based on Car Engine Coolant
,”
J. Phys. D Appl. Phys.
,
43
(
31
), pp.
315501
315510
.10.1088/0022-3727/43/31/315501
20.
Harish
,
G.
,
Emlin
,
V.
, and
Sajith
,
V.
,
2011
, “
Effect of Surface Particle Interactions During Pool Boiling of Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2318
2327
.10.1016/j.ijthermalsci.2011.06.019
21.
Verma
,
S. K.
, and
Tiwari
,
A. K.
,
2015
, “
Progress of Nanofluid Application in Solar Collectors: A Review
,”
Energy Convers. Manage.
,
100
, pp.
324
346
.10.1016/j.enconman.2015.04.071
22.
Khan
,
S. A.
,
Atieh
,
M. A.
, and
Koç
,
M.
,
2018
, “
Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review
,”
Energies
,
11
(
11
), p.
3189
.10.3390/en11113189
23.
Rudyak
,
V.
,
2019
, “
Thermophysical Characteristics of Nanofluids and Transport Process Mechanisms
,”
J. Nanofluids Am. Sci. Publishers
,
8
, pp.
1
16
.10.1166/jon.2019.1561
24.
Li
,
W.
,
Chen
,
Z.
,
Li
,
J.
,
Sheng
,
K.
, and
Zhu
,
J.
,
2019
, “
Subcooled Flow Boiling on Hydrophilic and Super-Hydrophilic Surfaces in Microchannel Under Different Orientations
,”
Int. J. Heat Mass Transfer
,
129
, pp.
635
649
.10.1016/j.ijheatmasstransfer.2018.10.003
25.
Li
,
W.
,
Lin
,
Y.
,
Zhou
,
K.
,
Li
,
J.
, and
Zhu
,
J.
,
2019
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
Int. J. Therm. Sci.
,
145
, p.
105996
.10.1016/j.ijthermalsci.2019.105996
26.
Massart
,
R.
,
1982
, “
Magnetic Fluids and Process for Obtain Them
,” U.S. Patent No. 4,329,241.
27.
Souza
,
R. R.
,
Manetti
,
L. L.
,
Kiyomura
,
I. S.
, and
Cardoso
,
E. M.
,
2018
, “
Liquid/Surface Interaction During Pool Boiling of DI-Water on Nanocoated Heating Surfaces
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
, pp.
1
11
10.1007/s40430-018-1436-6.
28.
Ortegon
,
J. A. A.
,
Souza
,
R. R.
,
Silva
,
J. B. C.
, and
Cardoso
,
E. M.
,
2019
, “
Analytical, Experimental, and Numerical Analysis of a Microchannel Cooling System for High‐Concentration Photovoltaic Cells
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
, p.
255
.10.1007/s40430-019-1754-3
29.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2001
, “
Theory and Design for Mechanical Measurements
,”
Meas. Sci. Technol.
,
12
(
10
), pp.
1743
1743
.10.1088/0957-0233/12/10/701
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Kshirsagar
,
J. M.
, and
Shrivastava
,
R.
,
2018
, “
Experimental Investigation of Nucleate Pool Boiling Characteristics of High Concentrated Alumina/Water Nanofluids
,”
Heat Mass Transfer
,
54
(
6
), pp.
1779
1790
.10.1007/s00231-017-2253-7
32.
Nolan
,
E.
,
Rioux
,
R.
,
Jiang
,
P.
,
Peterson
,
G. P.
, and
Li
,
C. H.
,
2013
, “
Experimental Study of Contact Angle and Active Nucleation Site Distribution on Nanostructure Modified Copper Surface in Pool Boiling Heat Transfer Enhancement
,”
Heat Transfer Res.
,
44
(
1
), pp.
115
131
.10.1615/HeatTransRes.2012005687
33.
Rufus, A., Sreeju, N., Vilas, V., and Philip, D., 2017, “Biosynthesis of Hematite (α-Fe2O3) Nanostructures: Size Effects on Applications in Thermal Conductivity, Catalysis, and Antibacterial Activity,”
J. Mol. Liq.
, 242, pp. 537–549.10.1016/j.molliq.2017.07.057
34.
Ahmed
,
O.
, and
Hamed
,
M. S.
,
2012
, “
Experimental Investigation of the Effect of Particle Deposition on Pool Boiling of Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3423
3436
.10.1016/j.ijheatmasstransfer.2012.02.021
35.
Vafaei
,
S.
,
2015
, “
Nanofluid Pool Boiling Heat Transfer Phenomenon
,”
Powder Technol.
,
277
, pp.
181
192
.10.1016/j.powtec.2015.02.040
36.
Sarafraz
,
M. M.
,
Kiani
,
T.
, and
Hormozi
,
F.
,
2016
, “
Critical Heat Flux and Pool Boiling Heat Transfer Analysis of Synthesized Zirconia Aqueous Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
75
83
.10.1016/j.icheatmasstransfer.2015.12.008
37.
Bhuiyan
,
M. H. U.
,
Saidur
,
R.
,
Amalina
,
M. A.
,
Mostafizur
,
R. M.
, and
Islam
,
A. K. M. S.
,
2015
, “
Effect of Nanoparticles Concentration and Their Sizes on Surface Tension of Nanofluids
,”
Procedia Eng.
,
105
, pp.
431
437
.10.1016/j.proeng.2015.05.030
38.
Santos Filho
,
E.
,
Nascimento
,
F. J.
,
Moreira
,
D. C.
, and
Ribatski
,
G.
,
2018
, “
Dynamic Wettability Evaluation of Nanoparticles-Coated Surfaces
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
231
242
.10.1016/j.expthermflusci.2017.11.025
You do not currently have access to this content.