Abstract

Active thermal materials like thermal diodes, regulators, and switches have the potential to revolutionize thermal management, creating an opportunity for significant energy savings. We present results on a proposed thermal switching composite that changes its thermal conductivity based on applied strain. The composite is constructed of highly crystalline, high aspect ratio cellulose nanocrystal (CNC) nanorods embedded in a shape-memory polymer matrix. The properties of the matrix allow for changes to the mechanical state to be indefinitely retained and also for the state to be reversed; this work is the first step in demonstrating that the thermal state exhibits similar reversibility. Measurements of the neat matrix polymer show a factor of three increase in thermal conductivity with applied strain up 100% and abrupt decrease beyond this strain level. A twofold increase in the thermal conductivity is achieved for the proof-of-concept composite at 100% strain. By comparing the measured results to a Maxwell mixing model, the primary drivers of the thermal conductivity change are traced to changes in crystallinity of the matrix and CNC alignment.

References

1.
Wehmeyer
,
G.
,
Yabuki
,
T.
,
Monachon
,
C.
,
Wu
,
J.
, and
Dames
,
C.
,
2017
, “
Thermal Diodes, Regulators, and Switches: Physical Mechanisms and Potential Applications
,”
Appl. Phys. Rev.
,
4
(
4
), p.
041304
.10.1063/1.5001072
2.
Lee
,
S.
,
Hippalgaonkar
,
K.
,
Yang
,
F.
,
Hong
,
J.
,
Ko
,
C.
,
Suh
,
J.
,
Liu
,
K.
,
Wang
,
K.
,
Urban
,
J. J.
,
Zhang
,
X.
,
Dames
,
C.
,
Hartnoll
,
S. A.
,
Delaire
,
O.
, and
Wu
,
J.
,
2017
, “
Anomalously Low Electronic Thermal Conductivity in Metallic Vanadium Oxide
,”
Science
,
355
(
6323
), pp.
371
374
.10.1126/science.aag0410
3.
Liu
,
H.
,
Shi
,
X.
,
Xu
,
F.
,
Zhang
,
L.
,
Zhang
,
W.
,
Chen
,
L.
,
Li
,
Q.
,
Uher
,
C.
,
Day
,
T.
, and
Snyder
,
G. J.
,
2012
, “
Copper Ion Liquid-Like Thermoelectrics
,”
Nat. Mater.
,
11
(
5
), pp.
422
425
.10.1038/nmat3273
4.
Kim
,
K.
, and
Kaviany
,
M.
,
2016
, “
Thermal Conductivity Switch: Optimal Semiconductor/Metal Melting Transition
,”
Phys. Rev. B
,
94
(
15
), p.
155203
.10.1103/PhysRevB.94.155203
5.
Li
,
C.
,
Ma
,
Y.
, and
Tian
,
Z.
,
2018
, “
Thermal Switching of Thermoresponsive Polymer Aqueous Solutions
,”
ACS Macro Lett.
,
7
(
1
), pp.
53
58
.10.1021/acsmacrolett.7b00938
6.
Lendlein
,
A.
, and
Kelch
,
S.
,
2002
, “
Shape-Memory Polymers
,”
Angew. Chem.
,
41
(
12
), pp.
2034
2057
.10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
7.
Habibi
,
Y.
,
Lucia
,
L. A.
, and
Rojas
,
O. J.
,
2010
, “
Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications
,”
Chem. Rev.
,
110
(
6
), pp.
3479
3500
.10.1021/cr900339w
8.
Eichhorn
,
S. J.
,
Dufresne
,
A.
,
Aranguren
,
M.
,
Marcovich
,
N. E.
,
Capadona
,
J. R.
,
Rowan
,
S. J.
,
Weder
,
C.
,
Thielemans
,
W.
,
Roman
,
M.
,
Renneckar
,
S.
,
Gindl
,
W.
,
Veigel
,
S.
,
Keckes
,
J.
,
Yano
,
H.
,
Abe
,
K.
,
Nogi
,
M.
,
Nakagaito
,
A. N.
,
Mangalam
,
A.
,
Simonsen
,
J.
,
Benight
,
A. S.
,
Bismarck
,
A.
,
Berglund
,
L. A.
, and
Peijs
,
T.
,
2010
, “
Review: Current International Research Into Cellulose Nanofibres and Nanocomposites
,”
J. Mater. Sci.
,
45
(
1
), pp.
1
33
.10.1007/s10853-009-3874-0
9.
Xie
,
S.
,
Zhang
,
X.
,
Walcott
,
M. P.
, and
Lin
,
H.
,
2018
, “
Applications of Cellulose Nanocrystals: A Review
,”
Eng. Sci.
,
2
, pp.
4
16
.10.30919/es.1803302
10.
Rusli
,
R.
,
Shanmuganathan
,
K.
,
Rowan
,
S. J.
,
Weder
,
C.
, and
Eichhorn
,
S. J.
,
2011
, “
Stress Transfer in Cellulose Nanowhisker Composites-Influence of Whisker Aspect Ratio and Surface Charge
,”
Biomacromolecules
,
12
(
4
), pp.
1363
1369
.10.1021/bm200141x
11.
Diaz
,
J. A.
,
Ye
,
Z.
,
Wu
,
X.
,
Moore
,
A. L.
,
Moon
,
R. J.
,
Martini
,
A.
,
Boday
,
D. J.
, and
Youngblood
,
J. P.
,
2014
, “
Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films
,”
Biomacromolecules
,
15
(
11
), pp.
4096
4101
.10.1021/bm501131a
12.
Uetani
,
K.
, and
Hatori
,
K.
,
2017
, “
Thermal Conductivity Analysis and Applications of Nanocellulose Materials
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
877
892
.10.1080/14686996.2017.1390692
13.
Liu
,
J.-C.
,
Martin
,
D. J.
,
Moon
,
R. J.
, and
Youngblood
,
J. P.
,
2015
, “
Enhanced Thermal Stability of Biomedical Thermoplastic Polyurethane With the Addition of Cellulose Nanocrystals
,”
J. Appl. Polym. Sci.
,
132
(
22
), p.
41970
.10.1002/app.41970
14.
Choy
,
C.
,
1977
, “
Thermal Conductivity of Polymers
,”
Polymer
,
18
(
10
), pp.
984
1004
.10.1016/0032-3861(77)90002-7
15.
Choy
,
C.
,
Chen
,
F.
, and
Luk
,
W.
,
1980
, “
Thermal Conductivity of Oriented Crystalline Polymers
,”
J. Polym. Sci. Polym. Phys. Ed.
,
18
(
6
), pp.
1187
1207
.10.1002/pol.1980.180180603
16.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibers With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
17.
Shulumba
,
N.
,
Hellman
,
O.
, and
Minnich
,
A. J.
,
2017
, “
Lattice Thermal Conductivity of Polyethylene Molecular Crystals From First-Principles Including Nuclear Quantum Effects
,”
Phys. Rev. Lett.
,
119
(
18
), p.
185901
.10.1103/PhysRevLett.119.185901
18.
Cudjoe
,
E.
,
Hunsen
,
M.
,
Xue
,
Z.
,
Way
,
A. E.
,
Barrios
,
E.
,
Olson
,
R. A.
,
Hore
,
M. J.
, and
Rowan
,
S.
,
2017
, “
Miscanthus Giganteus: A Commercially Viable Sustainable Source of Cellulose Nanocrystals
,”
Carbohydr. Polym.
,
155
(
2
), pp.
230
241
.10.1016/j.carbpol.2016.08.049
19.
Dagnon
,
K. L.
,
Way
,
A. E.
,
Carson
,
S. O.
,
Silva
,
J.
,
Maia
,
J.
, and
Rowan
,
S. J.
,
2013
, “
Controlling the Rate of Water-Induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites
,”
Macromolecules
,
46
(
20
), pp.
8203
8212
.10.1021/ma4008187
20.
Mahanta
,
N. K.
, and
Abramson
,
A. R.
,
2010
, “
The Dual-Mode Heat Flow Meter Technique: A Versatile Method for Characterizing Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5581
5586
.10.1016/j.ijheatmasstransfer.2010.05.063
21.
Ilavsky
,
J.
, and
Jemian
,
P. R.
,
2009
, “
Irena: Tool Suite for Modeling and Analysis of Small-Angle Scattering
,”
J. Appl. Crystallogr.
,
42
(
2
), pp.
347
353
.10.1107/S0021889809002222
22.
Zhang
,
F.
,
Ilavsky
,
J.
,
Long
,
G. G.
,
Quintana
,
J. P. G.
,
Allen
,
A. J.
, and
Jemian
,
P. R.
,
2010
, “
Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering
,”
Metall. Mater. Trans. A
,
41
(
5
), pp.
1151
1158
.10.1007/s11661-009-9950-x
23.
Nelson
,
A.
,
2006
, “
Co-Refinement of Multiple-Contrast Neutron/X-Ray Reflectivity Data Using MOTOFIT
,”
J. Appl. Crystallogr.
,
39
(
2
), pp.
273
276
.10.1107/S0021889806005073
24.
Beaucage
,
G.
,
1995
, “
Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering
,”
J. Appl. Crystallogr.
,
28
(
6
), pp.
717
728
.10.1107/S0021889895005292
25.
Park
,
S.
,
Baker
,
J. O.
,
Himmel
,
M. E.
,
Parilla
,
P. A.
, and
Johnson
,
D. K.
,
2010
, “
Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance
,”
Biotechnol. Biofuels
,
3
(
1
), p.
10
.10.1186/1754-6834-3-10
26.
Kojio
,
K.
,
Nakamura
,
S.
, and
Furukawa
,
M.
,
2004
, “
Effect of Side Methyl Groups of Polymer Glycol on Elogation-Induced Crystallization Behavior of Polyurethane Elastomers
,”
Polymer
,
45
(
24
), pp.
8147
8152
.10.1016/j.polymer.2004.09.061
27.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress-Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.10.1016/j.mechmat.2004.08.001
28.
Pietralla
,
M.
,
1976
, “
The Function of Twinning During the Deformation of Partially Crystalline Polymers
,”
Colloid Polym. Sci.
,
254
(
3
), pp.
249
257
.10.1007/BF01384023
29.
Berkowitz
,
K. M.
,
2014
, “
Characterization and Analysis of Shape Memory Polymer Composites With Cellulose Nanocrystal Fillers
,”
Electronic thesis
, Case Western Reserve University, Cleveland, OH.https://etd.ohiolink.edu/!etd.send_file?accession=case1396526722&disposition=inline
30.
Shimazaki
,
Y.
,
Miyazaki
,
Y.
,
Takezawa
,
Y.
,
Nogi
,
M.
,
Abe
,
K.
,
Ifuku
,
S.
, and
Yano
,
H.
,
2007
, “
Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites
,”
Biomacromolecules
,
8
(
9
), pp.
2976
2978
.10.1021/bm7004998
31.
Peacock
,
A. J.
, and
Calhoun
,
A. R.
,
2006
,
Polymer Chemistry: Properties and Applications
,
Hanser Verlag
, Munich, Germany.
32.
Rusli
,
R.
,
Shanmuganathan
,
K.
,
Rowan
,
S. J.
,
Weder
,
C.
, and
Eichhorn
,
S. J.
,
2010
, “
Stress-Transfer in Anisotropic and Environmentally Adaptive Cellulose Whisker Nanocomposites
,”
Biomacromolecules
,
11
(
3
), pp.
762
768
.10.1021/bm1001203
You do not currently have access to this content.