Abstract

In this paper, three-dimensional simulations to study the performance of microchannel heat sinks (MCHS) with rectangular, hexagonal, semicircular and various novel cross section (such as barrel, fan shaped, L shaped, inverted T shaped, inverted T shaped with semicircular ends at base (ITSCEB)) were carried out using de-ionized water. Numerical results were validated with the published experimental data and further simulations were performed on various novel cross section at a constant heat flux of 50 W/cm2 with Reynolds number varying in the range of 300–1500. The comparative analysis of various novel MCHS having the same cross-sectional area was carried out to figure out the suitable cross section capable of better cooling performance. This work shows that the novel ITSCEB cross section was giving the highest pressure drop, however considerable improvement was noted in the heat transfer coefficient around 21% more than conventional rectangular and around 11–55% more than other proposed cross section in this study.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
, “
Emerging Applications of Microchannels
,”
Next Generation Microchannel Heat Exchangers (Springer Briefs in Applied Sciences and Technology)
,
Springer
,
New York
.
3.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
4.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
,
2006
, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3538
3546
.10.1016/j.ijheatmasstransfer.2006.03.004
5.
Moharana
,
M. K.
,
Agarwal
,
G.
, and
Khandekar
,
S.
,
2011
, “
Axial Conduction in Single-Phase Simultaneously Developing Flow in a Rectangular Mini-Channel Array
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1001
1012
.10.1016/j.ijthermalsci.2011.01.017
6.
Rahimi
,
M.
, and
Mehryar
,
R.
,
2012
, “
Numerical Study of Axial Heat Conduction Effects on the Local Nusselt Number at the Entrance and Ending Regions of a Circular Microchannels
,”
Int. J. Therm. Sci.
,
59
, pp.
87
94
.10.1016/j.ijthermalsci.2012.04.017
7.
Wang
,
H.
,
Chen
,
Z.
, and
Gao
,
J.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.
,
107
, pp.
870
879
.10.1016/j.applthermaleng.2016.07.039
8.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Wu
,
J.
,
2009
, “
Three-Dimensional Numerical Simulation of Heat and Fluid Flow in Noncircular Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
917
920
.10.1016/j.icheatmasstransfer.2009.06.004
9.
Gunnasegaran
,
P.
,
Mohammed
,
H. A.
,
Shuaib
,
N. H.
, and
Saidur
,
R.
,
2010
, “
The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannels Heat Sink With Different Shapes
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1078
1086
.10.1016/j.icheatmasstransfer.2010.06.014
10.
Kadja
,
M.
, and
Rezaiguia
,
I.
,
2013
, “
Investigation of Conjugate Heat Transfer in Microchannels Using Variable Thermophysical Property Nanofluids
,”
ASME
Paper No. IMECE2013-64630
. 10.1115/IMECE2013-64630
11.
Ghasemi
,
S. E.
,
Ranjbar
,
A. A.
, and
Hosseini
,
M. J.
,
2017
, “
Numerical Study on Effect of CuO-Water Nanofluid on Cooling Performance of Two Different Cross-Sectional Heat Sinks
,”
Adv. Powder Technol.
,
28
(
6
), pp.
1495
1504
.10.1016/j.apt.2017.03.019
12.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1036
1044
.10.1115/1.2234786
13.
Sadeghi
,
E.
,
Bahrami
,
M.
, and
Djilali
,
N.
,
2010
, “
Estimation of Nusselt Number in Microchannels of Arbitrary Cross Section With Constant Axial Heat Flux
,”
Heat Transfer Eng.
,
31
(
8
), pp.
666
674
.10.1080/01457630903466647
14.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2010
, “
Laminar Flow in Microchannels With Noncircular Cross Section
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111201
.10.1115/1.4001973
15.
Alfaryjat
,
A. A.
,
Mohammed
,
H. A.
,
Adam
,
N. M.
,
Ariffin
,
M. K. A.
, and
Najafabadi
,
M. I.
,
2014
, “
Influence of Geometrical Parameters of Hexagonal, Circular, and Rhombus Microchannel Heat Sinks on the Thermohydraulic Characteristics
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
121
131
.10.1016/j.icheatmasstransfer.2014.01.015
16.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single Phase Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
17.
Kestin
,
J.
,
Sokolov
,
M.
, and
Wakeham
,
W. A.
,
1978
, “
Viscosity of Liquid Water in the Range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
,
7
(
3
), pp.
941
948
.10.1063/1.555581
18.
Xia
,
G.
,
Ma
,
D.
,
Zhai
,
Y.
,
Li
,
Y.
,
Liu
,
R.
, and
Du
,
M.
,
2015
, “
Experimental and Numerical Study of Fluid Flow and Heat Transfer Characteristics in Microchannel Heat Sink With Complex Structure
,”
Energy Convers. Manage.
,
105
, pp.
848
857
.10.1016/j.enconman.2015.08.042
19.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.10.1016/j.ijthermalsci.2009.01.004
20.
Tsai
,
T.
, and
Chein
,
R.
,
2007
, “
Performance Analysis of Nanofluid-Cooled Microchannel Heat Sinks
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1013
1026
.10.1016/j.ijheatfluidflow.2007.01.007
21.
Hung
,
T.-C.
,
Yan
,
W.-M.
,
Wang
,
X.-D.
, and
Chang
,
C.-Y.
,
2012
, “
Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2559
2570
.10.1016/j.ijheatmasstransfer.2012.01.004
22.
Li
,
Z.
,
He
,
Y.-L.
,
Tang
,
G.-H.
, and
Tao
,
W.-Q.
,
2007
, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3447
3460
.10.1016/j.ijheatmasstransfer.2007.01.016
You do not currently have access to this content.