Abstract

In order to give more sights into the melting (and solidification) heat transfer processes of nano-enhanced phase change material (NePCM) with invisible phase interfaces, a novel indirect method for tracking the phase interface by thermochromic liquid crystal (TLC) thermography is proposed. As an example case to demonstrate the applicability of the proposed method, the classical problem of melting heat transfer in a differentially heated rectangular cavity was revisited in the presence of NePCM of various loadings. A narrowband TLC was selected and calibrated carefully to build the hue–temperature relationship prior to being applied in the melting experiments. For validation purpose, the case of an unloaded NePCM, with a clear visible phase interface, was tested via combined direct and indirect observations. It was shown that this TLC method can easily and accurately capture the dynamic motions of the phase interface during melting. Based on the shape evolutions of the phase interface, it was concluded that for the NePCM sample with a higher loading (and hence a much greater viscosity), heat conduction becomes the dominant mode of heat transfer during melting as a result of the significantly deteriorated natural convection effect. This gives an intuitive confirmation of the hypothesis made in previous studies that were conducted using volume-average-based indirect methods.

References

1.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manag.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
2.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manag.
,
45
(
9–10
), pp.
1597
1615
.10.1016/j.enconman.2003.09.015
3.
Fan
,
L. W.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
4.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.10.1016/j.applthermaleng.2012.10.056
5.
Rozenfeld
,
T.
,
Kozak
,
Y.
,
Hayat
,
R.
, and
Ziskind
,
G.
,
2015
, “
Close-Contact Melting in a Horizontal Cylindrical Enclosure With Longitudinal Plate Fins: Demonstration, Modeling and Application to Thermal Storage
,”
Int. J. Heat Mass Transfer
,
86
, pp.
465
477
.10.1016/j.ijheatmasstransfer.2015.02.064
6.
Esapour
,
M.
,
Hamzehnezhad
,
A.
,
Darzi
,
A. A. R.
, and
Jourabian
,
M.
,
2018
, “
Melting and Solidification of PCM Embedded in Porous Metal Foam in Horizontal Multi-Tube Heat Storage System
,”
Energy Convers. Manag.
,
171
, pp.
398
410
.10.1016/j.enconman.2018.05.086
7.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
Y. B.
,
2014
, “
Experimental Study of a Passive Thermal Management System for High-Powered Lithium Ion Batteries Using Porous Metal Foam Saturated With Phase Change Materials
,”
J. Power Sources
,
255
, pp.
9
15
.10.1016/j.jpowsour.2014.01.006
8.
Khodadadi
,
J. M.
,
Fan
,
L. W.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.10.1016/j.rser.2013.03.031
9.
Webb
,
B. W.
,
Moallemi
,
M. K.
, and
Viskanta
,
R.
,
1987
, “
Experiments on Melting of Unfixed Ice in a Horizontal Cylindrical Capsule
,”
ASME J. Heat Transfer
,
109
(
2
), pp.
454
459
.10.1115/1.3248103
10.
Tan
,
F. L.
,
2008
, “
Constrained and Unconstrained Melting Inside a Sphere
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
466
475
.10.1016/j.icheatmasstransfer.2007.09.008
11.
Kozak
,
Y.
,
Rozenfeld
,
T.
, and
Ziskind
,
G.
,
2014
, “
Close-Contact Melting in Vertical Annular Enclosures With a Non-Isothermal Base: Theoretical Modeling and Application to Thermal Storage
,”
Int. J. Heat Mass Transfer
,
72
, pp.
114
127
.10.1016/j.ijheatmasstransfer.2013.12.058
12.
Yu
,
Z. T.
,
Fang
,
X.
,
Fan
,
L. W.
,
Wang
,
X.
,
Xiao
,
Y. Q.
,
Zeng
,
Y.
,
Xu
,
X.
,
Hu
,
Y. C.
, and
Cen
,
K. F.
,
2013
, “
Increased Thermal Conductivity of Liquid Paraffin-Based Suspensions in the Presence of Carbon Nano-Additives of Various Size and Shapes
,”
Carbon
,
53
, pp.
277
285
.10.1016/j.carbon.2012.10.059
13.
Rahman
,
M. M.
,
Hu
,
H.
,
Shabgard
,
H.
,
Boettcher
,
P.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2016
, “
Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures
,”
ASME J. Heat Transfer
,
138
, p.
072301
.10.1115/1.4033007
14.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Ding
,
Q.
, and
Liu
,
M. J.
,
2016
, “
Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1057
1069
.10.1016/j.ijheatmasstransfer.2016.01.013
15.
Liu
,
M. J.
,
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Feng
,
B.
,
Zhang
,
H. C.
, and
Zeng
,
Y.
,
2016
, “
A Volume-Shrinkage-Based Method for Quantifying the Inward Solidification Heat Transfer of a Phase Change Material Filled in Spherical Capsules
,”
Appl. Therm. Eng.
,
108
, pp.
1200
1205
.10.1016/j.applthermaleng.2016.08.027
16.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of NePCM Inside an Annular Container Under a Constant Heat Flux Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
455
468
.10.1016/j.ijheatmasstransfer.2013.08.002
17.
Zeng
,
Y.
,
Fan
,
L. W.
,
Xiao
,
Y. Q.
,
Yu
,
Z. T.
, and
Cen
,
K. F.
,
2013
, “
An Experimental Investigation of Melting of Nanoparticle-Enhanced Phase Change Materials (NePCMs) in a Bottom-Heated Vertical Cylindrical Cavity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
111
117
.10.1016/j.ijheatmasstransfer.2013.07.022
18.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.10.1115/1.3246884
19.
Smith
,
C. R.
,
Sabatino
,
D. R.
, and
Praisner
,
T. J.
,
2001
, “
Temperature Sensing With Thermochromic Liquid Crystals
,”
Exp. Fluid
,
30
(
2
), pp.
190
201
.10.1007/s003480000154
20.
Platzer
,
K. H.
,
Hirsch
,
C.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Computer-Based Areal Surface Temperature and Local Heat Transfer Measurements With Thermochromic Liquid Crystals (TLC)
,”
Exp. Fluid
,
13
(
1
), pp.
26
32
.10.1007/BF00208071
21.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal—Part 1: Calibration and Characteristics of Crystals
,”
Int. J. Heat Fluid Flow
,
30
, pp.
939
949
.10.1016/j.ijheatfluidflow.2009.04.007
22.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Application to a Rotating Disc
,”
Int. J. Heat Fluid Flow
,
30
, pp.
950
959
.10.1016/j.ijheatfluidflow.2009.04.005
23.
Jones
,
T. V.
, and
Hippensteele
,
S. A.
,
1988
, “
High-Resolution Heat-Transfer-Coefficient Maps Applicable to Compound-Curve Surfaces Using Liquid Crystals in a Transient Wind Tunnel
,”
NASA, Lewis Research Center, Cleveland, OH
, Report No.
89855
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890000875.pdf
24.
Roberts
,
G. T.
, and
East
,
R. A.
,
1996
, “
Liquid Crystal Thermography for Heat Transfer Measurement in Hypersonic Flows: A Review
,”
J. Spacecr. Rockets
,
33
(
6
), pp.
761
768
.10.2514/3.26835
25.
Vorobieff
,
P.
, and
Ecke
,
R. E.
,
1998
, “
Transient States During Spin-Up of a Rayleigh-Bernard Cell
,”
Phys. Fluid
,
10
(
10
), pp.
2525
2538
.10.1063/1.869768
26.
Muwanga
,
R.
, and
Hassan
,
I.
,
2006
, “
Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
617
626
.10.1115/1.2193541
27.
Hoang
,
V. N.
,
Kaigala
,
G. V.
, and
Backhouse
,
C. J.
,
2008
, “
Dynamic Temperature Measurement in Microfluidic Devices Using Thermochromic Liquid Crystals
,”
Lab Chip
,
8
(
3
), p.
484
.10.1039/b713764h
28.
Wiberg
,
R.
, and
Lior
,
N.
,
2004
, “
Errors in Thermochromic Liquid Crystal Thermometry
,”
Rev. Sci. Instrum.
,
75
(
9
), pp.
2985
2994
.10.1063/1.1777406
29.
Stasiek
,
J.
,
Stasiek
,
A.
,
Jewartowski
,
M.
, and
Collins
,
M. W.
,
2006
, “
Liquid Crystal Thermography and True-Colour Digital Image Processing
,”
Opt. Laser Tech.
,
38
(
4–6
), pp.
243
256
.10.1016/j.optlastec.2005.06.028
30.
Abdullah
,
N.
,
Talib
,
A. R. A.
,
Saiah
,
H. R. M.
,
Saiah
,
H. R. M.
,
Jaafar
,
A. A.
, and
Salleh
,
M. A. M.
,
2009
, “
Film Thickness Effects on Calibrations of Narrowband Thermochromic Liquid Crystal
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
561
578
.10.1016/j.expthermflusci.2008.12.002
31.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1996
, “
A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
12
(
1
), pp.
1
12
.10.1016/0894-1777(95)00013-5
32.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
(
4
), pp.
765
775
.10.1115/1.2928030
33.
Dabiri
,
D.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Thermometry: The Method and Implementation
,”
Exp. Fluid
,
11
(2–3), pp.
77
86
.10.1007/BF00190283
34.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1998
, “
Calibration of Micro-Encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature
,”
Exp. Therm. Fluid Sci.
,
18
(
3
), pp.
251
257
.10.1016/S0894-1777(98)10026-2
35.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z. T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.10.1016/j.ijheatmasstransfer.2014.08.001
You do not currently have access to this content.