Abstract

This work aims to formulate the temperature-rate dependent two-temperature (TRDTT) theory of thermoelasticity. The two-temperature thermoelasticity theory and the temperature-rate dependent thermoelasticity theory are two well-established thermoelasticity theories, which are developed from the generalized thermodynamic principles independently. Although the constitutive equations for TRDTT theory have been introduced, the formulation for the theory from the thermodynamical principles is not yet derived. Therefore, this work is an attempt to establish the theory from the generalized laws of thermodynamics and derive all the governing equations and constitutive relations for the theory. We derive a new and more general two-temperature relation that involves the temperature-rate terms of conductive and thermodynamic temperatures. We observe that this relation is different from the two-temperature relation reported in the literature. Further, we prove the uniqueness of solution for a general mixed initial boundary value problem in the context of linear modified TRDTT thermoelasticity theory for anisotropic medium. To investigate the effect of the present modified TRDTT theory, we solve a one-dimensional half-space problem and highlight the significance of the present theory.

References

1.
Duhamel
,
J. M. C.
,
1837
, “
Second Memoire Sur Les Phenomenes Thermo-Mecaniques
,”
J. Ec. Polytech. (Paris)
,
15
(
25
), pp.
1
57
.https://link.springer.com/content/pdf/bfm%3A978-1-4020-9247-3%2F1.pdf
2.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.10.1063/1.1722351
3.
Cattaneo
,
C.
,
1958
, “
A Form of Heat-Conduction Equations Which Eliminates the Paradox of Instantaneous Propagation
,”
Compt. Rend.
,
247
, pp.
431
433
.
4.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Théorie Continue de L'équation de Lachaleur
,”
Compt. Rend.
,
246
, pp.
3154
3155
.
5.
Vernotte
,
P.
,
1961
, “
Some Possible Complications in the Phenomena of Thermal Conduction
,”
Compt. Rend.
,
252
, pp.
2190
2191
.
6.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.10.1016/0022-5096(67)90024-5
7.
Chandrasekharaiah
,
D. S.
,
1986
, “
Thermoelasticity With Second Sound: A Review
,”
ASME Appl. Mech. Rev.
,
39
(
3
), pp.
355
376
.10.1115/1.3143705
8.
Chandrasekharaiah
,
D. S.
,
1998
, “
Hyperbolic Thermoelasticity: A Review of Recent Literature
,”
ASME Appl. Mech. Rev.
,
51
(
12
), pp.
705
729
.10.1115/1.3098984
9.
Tzou
,
D. Y.
,
2015
,
Macro- to Micro-Scale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
10.
Hetnarski
,
R. B.
,
Eslami
,
M. R.
, and
Gladwell
,
G. M. L.
,
2009
,
Thermal Stresses: Advanced Theory and Applications
, Vol.
41
,
Springer
,
New York
.
11.
Green
,
A. E.
, and
Laws
,
N.
,
1972
, “
On the Entropy Production Inequality
,”
Arch. Ration. Mech. Anal.
,
45
(
1
), pp.
47
53
.10.1007/BF00253395
12.
Muller
,
I.
,
1967
, “
On the Entropy Inequality
,”
Arch. Ration. Mech. Anal.
,
26
, pp.
118
141
.10.1007/BF00285677
13.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elast.
,
2
(
1
), pp.
1
7
.10.1007/BF00045689
14.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1991
, “
A Re-Examination of the Basic Postulates of Thermomechanics
,”
Proc. R. Soc. London A
,
432
(
1885
), pp.
171
194
.10.1098/rspa.1991.0012
15.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stresses
,
15
(
2
), pp.
253
264
.10.1080/01495739208946136
16.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elast.
,
31
(
3
), pp.
189
208
.10.1007/BF00044969
17.
Gurtin
,
M. E.
, and
Williams
,
W. O.
,
1966
, “
On the Clausius-Duhem Inequality
,”
Z. Angew. Math. Phys.
, 17(5), pp.
626
633
.10.1007/BF01597243 
18.
Chen
,
P. J.
, and
Gurtin
,
M. E.
,
1968
, “
On a Theory of Heat Conduction Involving Two Temperatures
,”
J. Appl. Math. Phys. (ZAMP)
,
19
(
4
), pp.
614
627
.10.1007/BF01594969
19.
Chakrabarti
,
S.
,
1973
, “
Thermoelastic Waves in Non-Simple Media
,”
Pure Appl. Geophys.
,
109
(
1
), p.
1682
.10.1007/BF00876093
20.
Chen
,
P. J.
,
Gurtin
,
M. E.
, and
Williams
,
W. O.
,
1969
, “
On the Thermodynamics of Non-Simple Elastic Materials With Two Temperatures
,”
J. Appl. Math. Phys.
,
20
(
1
), pp.
107
112
.10.1007/BF01591120
21.
Warren
,
W. E.
, and
Chen
,
P. J.
,
1973
, “
Wave Propagation in the Two Temperature Theory of Thermoelasticity
,”
Acta Mech.
,
16
(
1–2
), pp.
21
33
.10.1007/BF01177123
22.
Puri
,
P.
, and
Jordan
,
P. M.
,
2006
, “
On the Propagation of Harmonic Plane Waves Under the Two-Temperature Theory
,”
Int. J. Eng. Sci.
,
44
(
17
), pp.
1113
1126
.10.1016/j.ijengsci.2006.07.002
23.
Quintanilla
,
R.
,
2004
, “
On Existence, Structural Stability, Convergence and Spatial Behavior in Thermoelasticity With Two Temperatures
,”
Acta Mech.
,
168
(
1–2
), pp.
61
73
.10.1007/s00707-004-0073-6
24.
Youssef
,
H. M.
,
2006
, “
Theory of Two-Temperature-Generalized Thermoelasticity
,”
IMA J. Appl. Math.
,
71
(
3
), pp.
383
390
.10.1093/imamat/hxh101
25.
Youssef
,
H. M.
, and
Al-Lehaibi
,
E. A.
,
2007
, “
State-Space Approach of Two-Temperature Generalized Thermoelasticity of One-Dimensional Problem
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1550
1562
.10.1016/j.ijsolstr.2006.06.035
26.
Kumar
,
R.
, and
Mukhopadhyay
,
S.
,
2010
, “
Effects of Thermal Relaxation Time on Plane Wave Propagation Under Two-Temperature Thermoelasticity
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
128
139
.10.1016/j.ijengsci.2009.07.001
27.
El-Karamany
,
A. S.
, and
Ezzat
,
M. A.
,
2011
, “
On the Two-Temperature Green–Naghdi Thermoelasticity Theories
,”
J. Therm. Stresses
,
34
(
12
), pp.
1207
1226
.10.1080/01495739.2011.608313
28.
Youssef
,
H. M.
,
2010
, “
Theory of Fractional Order Generalized Thermoelasticity
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061301
.10.1115/1.4000705
29.
El-Karamany
,
A. S.
, and
Ezzat
,
M. A.
,
2011
, “
Convolutional Variational Principle, Reciprocal and Uniqueness Theorems in Linear Fractional Two-Temperature Thermoelasticity
,”
J. Therm. Stresses
,
34
(
3
), pp.
264
284
.10.1080/01495739.2010.545741
30.
Mittal
,
G.
, and
Kulkarni
,
V. S.
,
2019
, “
Two Temperature Fractional Order Thermoelasticity Theory in a Spherical Domain
,”
J. Therm. Stresses
,
42
(
9
), pp.
1
17
.10.1080/01495739.2019.1615854
31.
Zenkour
,
A. M.
, and
Abouelregal
,
A. E.
,
2014
, “
The Effect of Two Temperatures on a FG Nanobeam Induced by a Sinusoidal Pulse Heating
,”
Struct. Eng. Mech.
,
51
(
2
), pp.
199
214
.10.12989/sem.2014.51.2.199
32.
Abo-Dahab
,
S. M.
,
2018
, “
Reflection of Generalized Magneto-Thermoelastic Waves With Two Temperatures Under Influence of Thermal Shock and Initial Stress
,”
ASME J. Heat Transfer
,
140
(
10
), p.
102005
.10.1115/1.4040258
33.
Magana
,
A.
, and
Quintanilla
,
R.
,
2009
, “
Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories
,”
Math. Mech. Solids
,
14
(
7
), pp.
622
634
.10.1177/1081286507087653
34.
Kumar
,
R.
,
Kumar
,
A.
, and
Mukhopadhyay
,
S.
,
2016
, “
An Investigation on Thermoelastic Interactions Under Two-Temperature Thermoelasticity With Two Relaxation Parameters
,”
Math. Mech. Solids
,
21
(
6
), pp.
725
736
.10.1177/1081286514536429
35.
Kumar
,
A.
,
Kant
,
S.
, and
Mukhopadhyay
,
S.
,
2017
, “
An in-Depth Investigation on Plane Harmonic Waves Under Two-Temperature Thermoelasticity With Two Relaxation Parameters
,”
Math. Mech. Solids
,
22
(
2
), pp.
191
209
.10.1177/1081286515578495
36.
Quintanilla
,
R.
, and
Jordan
,
P. M.
,
2009
, “
A Note on the Two Temperature Theory With Dual-Phase-Lag Delay: Some Exact Solutions
,”
Mech. Res. Commun.
,
36
(
7
), pp.
796
803
.10.1016/j.mechrescom.2009.05.002
37.
Kumari
,
S.
, and
Singh
,
B.
,
2019
, “
Effects of Two-Temperature on Rayleigh Wave in Generalized Magneto-Thermoelastic Media With Hydrostatic Initial Stress
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072002
.10.1115/1.4043677
38.
Youssef
,
H. M.
, and
Alghamdi
,
N. A.
,
2018
, “
High-Order Effect in Two-Temperature Thermal Lagging to Thermal Responses in Biological Tissue Subjected to Laser Irradiation
,”
J. Biomater. Tissue Eng.
,
8
(
10
), pp.
1519
1526
.10.1166/jbt.2018.1897
39.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms [D5]
,”
Commun. ACM
,
13
(
1
), pp.
47
49
.10.1145/361953.361969
You do not currently have access to this content.