Abstract

Molecular dynamics simulations are used to explore explosive boiling of thin water films on a gold substrate. In particular, water films of 0.7, 1.6, and 2.5 nanometer thickness were examined. Three different surface wettabilities with contact angles of 11 deg, 47 deg, and 110 deg were simulated along with substrate temperatures of 400 K, 600 K, 800 K, and 1000 K. The 11 and 47 deg contact angles were obtained using a Morse interaction potential between the water film and gold substrate while the 47 and 110 deg contact angles were obtained via a Lennard-Jones potential. Evaporation was the first mode of phase change observed in all cases and explosive boiling did not occur until the substrate reached a temperature of 800 K. When explosive boiling was present for all three contact angles, it was consistently shown to occur first for the surface with a 47 deg contact angle and Lennard-Jones potential. These results suggest that explosive boiling onset is strongly dependent on the particularities of the interaction potential. For instance, the Morse potential is smoother when compared to the Lennard-Jones potential, but has more interaction sites per molecule—two hydrogen atoms and one oxygen atom versus one oxygen atom. Thus, even when the water film reaches a higher temperature with the Morse potential, explosive boiling onset is delayed as more interaction sites have to be disrupted. These results suggest that contact angle alone is insufficient and both the interaction strength and the number of atoms interacting at the interface must be considered when investigating trends of explosive boiling with surface wettability.

References

1.
Shepherd
,
J. E.
, and
Sturtevant
,
B.
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
(
1
), pp.
379
402
.10.1017/S0022112082001955
2.
Duan
,
Z.
,
Ren
,
T.
, and
Ding
,
G.
,
2019
, “
Suppression Effects of Micro-Fin Surface on the Explosive Boiling of Liquefied Gas Under Rapid Depressurization
,”
J. Hazard. Mater.
,
365
, pp.
375
385
.10.1016/j.jhazmat.2018.11.025
3.
Ren
,
J.
,
Ye
,
Z.
,
Fan
,
S.
, and
Bi
,
M.
,
2017
, “
Analysis of the Explosive Boiling Process of Liquefied Gases Due to Rapid Depressurization
,”
J. Loss Prev. Process Ind.
,
49
, pp.
845
851
.10.1016/j.jlp.2016.12.004
4.
Abe
,
Y.
,
Nariai
,
H.
, and
Hamada
,
Y.
,
2002
, “
The Trigger Mechanism of Vapor Explosion
,”
J. Nucl. Sci. Tech.
,
39
(
8
), pp.
845
853
.10.1080/18811248.2002.9715268
5.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2005
, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.10.1016/j.ijmultiphaseflow.2005.01.003
6.
Kichatov
,
B.
,
Korshunov
,
A.
,
Kiverin
,
A.
, and
Saveliev
,
A.
,
2018
, “
The Role of Explosive Boiling in the Process of Foamed Emulsion Combustion
,”
Int. J. Heat Mass Transfer
,
119
, pp.
199
207
.10.1016/j.ijheatmasstransfer.2017.11.116
7.
Gao
,
W.
,
Qi
,
J.
,
Zhang
,
J.
,
Chen
,
G.
, and
Wu
,
D.
,
2019
, “
An Experimental Study on Explosive Boiling of Superheated Droplets in Vacuum Spray Flash Evaporation
,”
Int. J. Heat Mass Transfer
,
144
, p.
118552
.10.1016/j.ijheatmasstransfer.2019.118552
8.
Lang
,
F.
,
Mosbacher
,
M.
, and
Leiderer
,
P.
,
2003
, “
Near Field Induced Defects and Influence of the Liquid Layer Thickness in Steam Laser Cleaning of Silicon Wafers
,”
Appl. Phys. A
,
77
(
1
), pp.
117
123
.10.1007/s00339-003-2101-0
9.
Kim
,
D.
, and
Lee
,
J.
,
2003
, “
On the Physical Mechanisms of Liquid-Assisted Laser Cleaning
,”
J. Appl. Phys.
,
93
(
1
), pp.
762
764
.10.1063/1.1527207
10.
Seyf
,
H. R.
, and
Zhang
,
Y.
,
2013
, “
Molecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface
,”
ASME J. Heat Transfer
,
135
(
12
), p.
121503
.10.1115/1.4024668
11.
Morshed
,
A. K. M. M.
,
Paul
,
T.
, and
Khan
,
J.
,
2011
, “
Effect of Nanostructures on Evaporation and Explosive Boiling of Thin Liquid Films: A Molecular Dynamics Study
,”
Appl. Phys. A
,
105
(
2
), pp.
445
451
.10.1007/s00339-011-6577-8
12.
Wang
,
W.
,
Zhang
,
H.
,
Tian
,
C.
, and
Meng
,
X.
,
2015
, “
Numerical Experiments on Evaporation and Explosive Boiling of Ultra-Thin Liquid Argon Film on Aluminum Nanostructure Substrate
,”
Nanoscale Res. Lett.
,
10
(
1
), p.
158
.10.1186/s11671-015-0830-6
13.
Zhang
,
S.
,
Hao
,
F.
,
Chen
,
H.
,
Yuan
,
W.
,
Tang
,
Y.
, and
Chen
,
X.
,
2017
, “
Molecular Dynamics Simulation on Explosive Boiling of Liquid Argon Film on Copper Nanochannels
,”
Appl. Therm. Eng.
,
113
, pp.
208
214
.10.1016/j.applthermaleng.2016.11.034
14.
Seyf
,
H. R.
, and
Zhang
,
Y.
,
2013
, “
Effect of Nanotexured Array of Conical Features on Explosive Boiling Over a Flat Substrate: A Nonequilibrium Molecular Dynamics Study
,”
Int. J. Heat Mass Transfer
,
66
, pp.
613
624
.10.1016/j.ijheatmasstransfer.2013.07.025
15.
Shavik
,
S. M.
,
Hasan
,
M. N.
, and
Morshed
,
A. K. M. M.
,
2016
, “
Molecular Dynamics Study on Explosive Boiling of Thin Liquid Argon Film on Nanostructured Surface Under Different Wetting Conditions
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010904
.10.1115/1.4032463
16.
Wang
,
Y.
,
Wang
,
S.
,
Lu
,
G.
, and
Wang
,
X.
,
2018
, “
Explosive Boiling of Nano-Liquid Argon Films on High Temperature Platinum Walls: Effects of Surface Wettability and Film Thickness
,”
Int. J. Therm. Sci.
,
132
, pp.
610
617
.10.1016/j.ijthermalsci.2018.07.007
17.
Zhang
,
H.
,
Li
,
C.
,
Zhao
,
M.
,
Zhu
,
Y.
, and
Wang
,
W.
,
2017
, “
Influence of Interface Wettability on Normal and Explosive Boiling of Ultra-Thin Liquid Films on a Heat Substrate in Nanoscale: A Molecular Dynamics Study
,”
Micro Nano Lett.
,
12
(
11
), pp.
843
848
.10.1049/mnl.2017.0425
18.
Fu
,
T.
,
Mao
,
Y.
,
Tang
,
Y.
,
Zhang
,
Y.
, and
Yuan
,
W.
,
2016
, “
Effect of Nanostructure on Rapid Boiling of Water on a Hot Copper Plate: A Molecular Dynamics Study
,”
Heat Mass Transfer
,
52
(
8
), pp.
1469
1478
.10.1007/s00231-015-1668-2
19.
Fu
,
T.
,
Mao
,
Y.
,
Tang
,
Y.
,
Zhang
,
Y.
, and
Yuan
,
W.
,
2015
, “
Molecular Dynamics Simulation on Rapid Boiling of Thin Water Films on Cone-Shaped Nanostructure Surfaces
,”
Nanoscale Microscale Thermophysical Eng.
,
19
(
1
), pp.
17
30
.10.1080/15567265.2014.991480
20.
Wang
,
Y.
,
Wang
,
S.
,
Lu
,
G.
, and
Wang
,
X.
,
2019
, “
Effects of Wettability on Explosive Boiling of Nanoscale Liquid Films: Whether the Classical Nucleation Theory Fails or Not?
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1277
1283
.10.1016/j.ijheatmasstransfer.2018.12.091
21.
Bourdon
,
B.
,
Bertrand
,
E.
,
Marco
,
P. D.
,
Marengo
,
M.
,
Rioboo
,
R.
, and
Coninck
,
J.
,
2015
, “
Wettability Influence on the Onset Temperature of Pool Boiling: Experimental Evidence Onto Ultra-Smooth Surfaces
,”
Adv. Colloid Interface Sci.
,
221
, pp.
34
40
.10.1016/j.cis.2015.04.004
22.
Jo
,
H.
,
Kim
,
S.
,
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
Nucleate  Boiling Performance on Nano/Microstructures With Different Wetting Surfaces
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
242
.10.1186/1556-276X-7-242
23.
Bourdon
,
B.
,
Rioboo
,
R.
,
Marengo
,
M.
,
Gosselin
,
E.
, and
Coninck
,
J.
,
2012
, “
Influence of the Wettability on the Boiling Onset
,”
Langmuir
,
28
(
2
), pp.
1618
1624
.10.1021/la203636a
24.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
How Does Surface Wettability Influence Nucleate Boiling?
,”
C. R. Mech.
,
337
(
5
), pp.
251
259
.10.1016/j.crme.2009.06.032
25.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5459
5471
.10.1016/j.ijheatmasstransfer.2009.06.032
26.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
27.
Bourdon
,
B.
,
Marco
,
P. D.
,
Rioboo
,
R.
,
Marengo
,
M.
, and
Coninck
,
J. D.
,
2013
, “
Enhancing the Onset of Pool Boiling by Wettability Modification on Nanometrically Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
11
15
.10.1016/j.icheatmasstransfer.2013.04.009
28.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
29.
Brown
,
W. M.
,
Wang
,
P.
,
Plimpton
,
S. J.
, and
Tharrington
,
A. N.
,
2011
, “
Implementing Molecular Dynamics on Hybrid High Performance Computers - Short Range Forces
,”
Comp. Phys. Commun.
,
182
(
4
), pp.
898
911
.10.1016/j.cpc.2010.12.021
30.
Brown
,
W. M.
,
Kohlmeyer
,
A.
,
Plimpton
,
S. J.
, and
Tharrington
,
A. N.
,
2012
, “
Implementing Molecular Dynamics on Hybrid High Performance Computers—Particle-Particle Particle-Mesh
,”
Comp. Phys. Commun.
,
183
(
3
), pp.
449
459
.10.1016/j.cpc.2011.10.012
31.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
32.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
(
24
), pp.
6269
6271
.10.1021/j100308a038
33.
Dou
,
Y.
,
Zhigilei
,
L. V.
,
Winograd
,
N.
, and
Garrison
,
B. J.
,
2001
, “
Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description
,”
J. Phys. Chem. A
,
105
(
12
), pp.
2748
2755
.10.1021/jp003913o
34.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), pp.
7983
7991
.10.1103/PhysRevB.33.7983
35.
Olsson
,
P. A. T.
,
2010
, “
Transverse Resonant Properties of Strained Gold Nanowires
,”
J. Appl. Phys.
,
108
(
3
), p.
034318
.10.1063/1.3460127
36.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields—II: From the Equation of State of a Gas
,”
Proc. R. Soc. London
,
106
(
738
), pp.
436
477
.10.1098/rspa.1924.0082
37.
Morse
,
P. M.
,
1929
, “
Diatomic Molecules According to the Wave Mechanics—II: Vibrational Levels
,”
Phys. Rev.
,
34
(
1
), pp.
57
64
.10.1103/PhysRev.34.57
38.
Berg
,
A.
,
Peter
,
C.
, and
Johnston
,
K.
,
2017
, “
Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces
,”
J. Chem. Theory Comput.
,
13
(
11
), pp.
5610
5623
.10.1021/acs.jctc.7b00612
39.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.10.1063/1.447334
40.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
,
1982
, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys
,.
76
(
1
), pp.
637
649
.10.1063/1.442716
41.
Andersen
,
H. C.
,
1983
, “
Rattle: A ‘Velocity’ Version of the Shake Algorithm for Molecular Dynamics Calculations
,”
J. Comp. Phys.
,
52
(
1
), pp.
24
34
.10.1016/0021-9991(83)90014-1
42.
Beckers
,
J. V. L.
,
Lowe
,
C. P.
, and
Leeuw
,
S. W. D.
,
1998
, “
An Iterative PPPM Method for Simulating Columbic Systems on Distributed Memory Parallel Computers
,” J.
Mol. Simul.
,.
20
(
6
), pp.
369
383
.10.1080/08927029808022044
43.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
You do not currently have access to this content.