Abstract

In order to test the effect of fin structure on the condensing heat transfer of refrigerants outside the low thermal conductivity tubes, condensation of R-134a, R-1234ze(E), and R-1233zd(E) on two enhanced titanium tubes were experimentally investigated. The two tubes have basically the same fin density while the fin structures are different. One tube is a typical low-fin (two-dimensional, 2D), and the other is a three-dimensional (3D) finned tube. In experiment heat flux was in the range of 10–80 kW·m−2. It was found that at higher heat flux, the condensing heat transfer coefficient (HTC) of 3D-finned tubes was apparently lower than that of 2D-enhanced tubes. The condensing HTC of R-134a for the two tubes was the highest. R-1233zd(E) was the lowest. It was shown from experimental results that the condensing HTC for R-1233zd(E) was notably affected by the change of saturation temperature outside the 3D-enhanced tube, but was less affected by the 2D fin structures.

References

1.
Al-Badri
,
A. R.
,
Bär
,
A.
,
Gotterbarm
,
A.
,
Rausch
,
M. H.
, and
Fröba
,
A. P.
,
2016
, “
The Influence of Fin Structure and Fin Density on the Condensation Heat Transfer of R134a on Single Finned Tubes and in Tube Bundles
,”
Int. J. Heat Mass Transfer
,
100
, pp.
582
589
.10.1016/j.ijheatmasstransfer.2016.04.087
2.
Zhao
,
C.-Y.
,
Ji
,
W.-T.
,
Jin
,
P.-H.
,
Zhong
,
Y.-J.
, and
Tao
,
W.-Q.
,
2017
, “
The Influence of Surface Structure and Thermal Conductivity of the Tube on the Condensation Heat Transfer of R134a and R404A Over Single Horizontal Enhanced Tubes
,”
Appl. Therm. Eng.
,
125
, pp.
1114
1122
.10.1016/j.applthermaleng.2017.06.133
3.
Zhang
,
D. C.
,
Ji
,
W. T.
, and
Tao
,
W. Q.
,
2007
, “
Condensation Heat Transfer of HFC134a on Horizontal Low Thermal Conductivity Tubes
,”
Int. C. Heat Mass Transfer
,
34
(
8
), pp.
917
923
.10.1016/j.icheatmasstransfer.2007.03.022
4.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Zhang
,
D.-C.
,
Li
,
Z.-Y.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
Condensation of R134a Outside Single Horizontal Titanium, Cupronickel (B10 and B30), Stainless Steel and Copper Tubes
,”
Int. J. Heat Mass Transfer
,
77
, pp.
194
201
.10.1016/j.ijheatmasstransfer.2014.04.050
5.
Jung
,
D.
,
Kim
,
C.-B.
,
Hwang
,
S.-M.
, and
Kim
,
K.-K.
,
2003
, “
Condensation Heat Transfer Coefficients of R22, R407C, and R410A on a Horizontal Plain, Low Fin, and Turbo-C Tubes
,”
Int. J. Refrig.
,
26
(
4
), pp.
485
491
.10.1016/S0140-7007(02)00161-5
6.
Kline
,
S. J.
,
1953
, “
The Description of Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
9
.
7.
Ji
,
W.-T.
,
Numata
,
M.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Nucleate Pool Boiling and Filmwise Condensation Heat Transfer of R134a on the Same Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
86
, pp.
744
754
.10.1016/j.ijheatmasstransfer.2015.02.020
8.
Lienhard
,
J. H.
,
2013
,
A Heat Transfer Textbook
,
Courier Corporation,
Cambridge, Massachusetts, U.S.A.
9.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
10.
Yunus
,
A. C.
, and
Ghajar
,
A. J.
,
2007
,
Transferencia de Calor y Masa
,
Segunda Edición, Editorial Mc GrawHill
,
México
.
11.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
, Danvers, MA, U.S.A.
12.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Lofton
,
J.
,
Li
,
Z.-Y.
,
Zhang
,
D.-C.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2018
, “
Condensation of R134a and R22 in Shell and Tube Condensers Mounted With High-Density Low-Fin Tubes
,”
ASME J. Heat Transfer
,
140
(
9
), p.
091503
.10.1115/1.4040083
13.
Nusselt
,
W.
,
1916
, “
Dia Oberflachen Condensation Des Wasserdampfes
,”
Zeitchrift Des Vereines Deustcher Ingenieure
,
60
, pp.
1645
1648
.
14.
Dhir
,
V.
, and
Lienhard
,
J.
,
1971
, “
Laminar Film Condensation on Plane and Axisymmetric Bodies in Nonuniform Gravity
,”
ASME J. Heat Transfer
,
93
(
1
), pp.
97
100
.10.1115/1.3449773
15.
Honda
,
H.
,
Uchima
,
B.
,
Nozu
,
S.
,
Torigoe
,
E.
, and
Imai
,
S.
,
1992
, “
Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
442
449
.10.1115/1.2911293
16.
Kumar
,
R.
,
Varma
,
H. K.
,
Mohanty
,
B.
, and
Agrawal
,
K. N.
,
2002
, “
Augmentation of Heat Transfer During Filmwise Condensation of Steam and R-134a Over Single Horizontal Finned Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
201
211
.10.1016/S0017-9310(01)00128-4
17.
Nagata
,
R.
,
Kondou
,
C.
, and
Koyama
,
S.
,
2016
, “
Comparative Assessment of Condensation and Pool Boiling Heat Transfer on Horizontal Plain Single Tubes for R1234ze (E), R1234ze (Z), and R1233zd (E)
,”
Int. J. Refri.
,
63
, pp.
157
170
.10.1016/j.ijrefrig.2015.11.002
18.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Zhang
,
D.-C.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2012
, “
Influence of Condensate Inundation on Heat Transfer of R134a Condensing on Three Dimensional Enhanced Tubes and Integral-Fin Tubes With High Fin Density
,”
Appl. Therm. Eng.
,
38
, pp.
151
159
.10.1016/j.applthermaleng.2012.01.029
You do not currently have access to this content.