Abstract

The processing power of handheld electronic devices has increased rapidly over the last decade. Modern handheld devices are thin (<9 mm) and utilize passive temperature control strategies. The combination of these factors has resulted in temperature control becoming a major obstacle to continued development. This work investigates the use of latent heat storage modules to improve the temperature control of tablet computers. Such modules store energy during periods of high heat dissipation and release it later when the device is less active. A key design aspect for these systems is identification of the appropriate phase change materials (PCMs), and specifically the optimal transition temperature. A numerical model of a tablet computer was created. Simulations with latent heat storage modules with transition temperatures between 35 and 47 °C showed that PCMs with lower transition temperatures allowed the tablet computer to operate longer without overheating. PCMs with transition temperatures between 35 and 40 °C were found to be most suitable.

References

1.
Greenspan
,
J. D.
,
Roy
,
E. A.
,
Caldwell
,
P. A.
, and
Farooq
,
N. S.
,
2003
, “
Thermosensory Intensity and Affect Throughout the Perceptible Range
,”
Somatosens. Mot. Res.
,
20
(
1
), pp.
19
26
.10.1080/0899022031000083807
2.
Kandasamy
,
R.
,
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.10.1016/j.applthermaleng.2007.06.010
3.
Kozak
,
Y.
,
Abramzon
,
B.
, and
Ziskind
,
G.
,
2013
, “
Experimental and Numerical Investigation of a Hybrid PCM–Air Heat Sink
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
142
152
.10.1016/j.applthermaleng.2013.05.021
4.
Fan
,
L.-W.
,
Xiao
,
Y.-Q.
,
Zeng
,
Y.
,
Fang
,
X.
,
Wang
,
X.
,
Xu
,
X.
,
Yu
,
Z.-T.
,
Hong
,
R.-H.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Effects of Melting Temperature and the Presence of Internal Fins on the Performance of a Phase Change Material (PCM)-Based Heat Sink
,”
Int. J. Therm. Sci.
,
70
, pp.
114
126
.10.1016/j.ijthermalsci.2013.03.015
5.
Mahmoud
,
S.
,
Tang
,
A.
,
Toh
,
C.
,
Al-Dadah
,
R.
, and
Soo
,
S. L.
,
2013
, “
Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks
,”
Appl. Energy
,
112
, pp.
1349
1356
.10.1016/j.apenergy.2013.04.059
6.
Hodes
,
M.
,
Weinstein
,
R. D.
,
Pence
,
S. J.
,
Piccini
,
J. M.
,
Manzione
,
L.
, and
Chen
,
C.
,
2002
, “
Transient Thermal Management of a Handset Using Phase Change Material (PCM)
,”
ASME J. Electron. Packag.
,
124
(
4
), p.
419
.10.1115/1.1523061
7.
Alawadhi
,
E.
, and
Amon
,
C.
,
2003
, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
116
125
.10.1109/TCAPT.2003.811480
8.
Tomizawa
,
Y.
,
Sasaki
,
K.
,
Kuroda
,
A.
,
Takeda
,
R.
, and
Kaito
,
Y.
,
2016
, “
Experimental and Numerical Study on Phase Change Material (PCM) for Thermal Management of Mobile Devices
,”
Appl. Therm. Eng.
,
98
, pp.
320
329
.10.1016/j.applthermaleng.2015.12.056
9.
Ahmed
,
T.
,
Bhouri
,
M.
,
Groulx
,
D.
, and
White
,
M. A.
,
2018
, “
Passive Thermal Management of Tablet PCs Using Phase Change Materials: Continuous Operation
,”
Int. J. Therm. Sci.
,
134
, pp.
101
115
.10.1016/j.ijthermalsci.2018.08.010
10.
Ahmed
,
T.
,
Bhouri
,
M.
,
Groulx
,
D.
, and
White
,
M. A.
,
2019
, “
Passive Thermal Management of Tablet PCs Using Phase Change Materials: Intermittent Operation
,”
Appl. Sci.
,
9
(
5
), p.
902
.10.3390/app9050902
11.
Sponagle
,
B.
, and
Groulx
,
D.
,
2015
, “
Thermal Modeling of Tablets: Temperature Management Using Phase Change Materials
,”
First Thermal and Fluid Engineering Summer Conference
, New York, Aug. 9–12, pp.
348
351
.
12.
Ahmed
,
T.
,
Bhouri
,
M.
,
Kahwaji
,
S.
,
Groulx
,
D.
, and
White
,
M. A.
,
2016
, “Experimental Investigation of Thermal Management of Tablet Computers Using Phase Change Materials (PCMs),”
ASME
Paper No. HT2016-7067.10.1115/HT2016-7067
13.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2015
, “
The Effect of the Mushy-Zone Constant on Simulated Phase Change Heat Transfer
,”
CHT-15 ICHMT International Symposium on Advances in Computational Heat Transfer
, Piscataway, NJ, May 25–29, p.
22
.
14.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
15.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of Phase Change Material/Nanoparticle Suspensions in a Square Container Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
66
, pp.
672
683
.10.1016/j.ijheatmasstransfer.2013.06.057
16.
Ogoh
,
W.
, and
Groulx
,
D.
,
2010
, “
Stefan's Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process
,”
COMSOL Conference 2010
, Boston, MA, Oct. 7–9.https://www.comsol.asia/paper/download/62472/groulx_paper.pdf
17.
Samara
,
F.
,
Groulx
,
D.
, and
Biwole
,
P. H.
,
2012
, “
Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods
,”
COMSOL Conference 2012
, Boston, MA, Oct. 7–9.https://www.researchgate.net/publication/262524859_Natural_Convection_Driven_Melting_of_Phase_Change_Material_Comparison_of_Two_Methods
18.
Sponagle
,
B.
,
2018
, “
Temperature Control of Handheld Electronic Devices Using Latent Heat Energy Storage
,” Ph.D. thesis, Mechanical Engineering, Dalhousie University, Halifax, NS, Canada.
19.
Sponagle
,
B.
,
Maranda
,
S.
, and
Groulx
,
D.
,
2017
, “
Investigation of the Thermal Behaviour of Thin Phase Change Material Packages as a Solution to Temperature Control in Electronics
,”
ASME
Paper No. HT2017-4801.10.1115/HT2017-4801
20.
Velez
,
C.
,
Khayet
,
M.
, and
Ortiz de Zárate
,
J. M.
,
2006
, “
Temperature-Dependent Thermal Properties of Solid/Liquid Phase Change Even-Numbered n-Alkanes: n-Hexadecane, n-Octadecane and n-Eicosane
,”
Appl. Energy
,
143
, pp.
383
394
.10.1016/j.apenergy.2015.01.054
You do not currently have access to this content.