Saturation of the water vapor is essential to form frost inside a permeable membrane. The main goal of this paper is to develop a numerical model that can predict temperature and humidity inside a membrane in order to show the location and time of saturation. This numerical model for heat and mass transfer is developed to show that frost formation may be prevented or delayed by controlling the moisture transfer through the membrane, which is the new approach in this paper. The idea is to simultaneously dry and cool air to avoid saturation conditions and thereby eliminate condensation and frosting in the membrane. Results show that saturation usually occurs on side of the membrane with the highest temperature and humidity. The numerical model is verified with experimental data and used to show that moisture transfer through the membrane can delay or prevent frost formation.

References

1.
Borgnakke
,
C.
, and
Sonntag
,
R. E.
,
2012
,
Fundamentals of Thermodynamics
,
Wiley Global Education
,
Chicago, IL
.
2.
Amer
,
M.
, and
Wang
,
C.-C.
,
2017
, “
Review of Defrosting Methods
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
53
74
.
3.
Liu
,
P.
,
Rafati Nasr
,
M.
,
Ge
,
G.
,
Alonso
,
M. J.
,
Mathisen
,
H. M.
,
Fathieh
,
F.
, and
Simonson
,
C.
,
2016
, “
A Theoretical Model to Predict Frosting Limits in Cross-Flow Air-to-Air Flat Plate Heat/Energy Exchangers
,”
Energy Build.
,
110
, pp.
404
414
.
4.
Léoni
,
A.
,
Mondot
,
M.
,
Durier
,
F.
,
Revellin
,
R.
, and
Haberschill
,
P.
,
2016
, “
State-of-the-Art Review of Frost Deposition on Flat Surfaces
,”
Int. J. Refrig.
,
68
, pp.
198
217
.
5.
Kim
,
P.
,
Wong
,
T.-S.
,
Alvarenga
,
J.
,
Kreder
,
M. J.
,
Adorno-Martinez
,
W. E.
, and
Aizenberg
,
J.
,
2012
, “
Liquid-Infused Nanostructured Surfaces With Extreme Anti-Ice and Anti-Frost Performance
,”
ACS Nano
,
6
(
8
), pp.
6569
6577
.
6.
Hong
,
S. J.
,
Lear
,
W. E.
, and
Kim
,
M. S.
,
2014
, “
Physical Characteristics of Frost Formation in Semi-Closed Cycle Turbine Engines
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1581
1588
.
7.
Li
,
Y.
,
Li
,
W.
,
Liu
,
Z.
,
Lu
,
J.
,
Zeng
,
L.
,
Yang
,
L.
, and
Xie
,
L.
,
2017
, “
Theoretical and Numerical Study on Performance of the Air-Source Heat Pump System in Tibet
,”
Renewable Energy
,
114
, pp.
489
501
.
8.
Jeong
,
C. H.
,
Lee
,
J. B.
,
Lee
,
S. H.
,
Lee
,
J.
,
You
,
S. M.
, and
Choi
,
C. K.
,
2016
, “
Frosting Characteristics on Hydrophilic and Superhydrophobic Copper Surfaces
,”
ASME J. Heat Transfer
,
138
(
2
), p.
020913
.
9.
Kim
,
H.
,
Kim
,
D.
,
Jang
,
H.
,
Kim
,
D. R.
, and
Lee
,
K.-S.
,
2016
, “
Microscopic Observation of Frost Behaviors at the Early Stage of Frost Formation on Hydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
97
, pp.
861
867
.
10.
Sommers
,
A. D.
,
Truster
,
N. L.
,
Napora
,
A. C.
,
Riechman
,
A. C.
, and
Caraballo
,
E. J.
,
2016
, “
Densification of Frost on Hydrophilic and Hydrophobic Substrates—Examining the Effect of Surface Wettability
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
25
34
.
11.
Rahimi
,
M.
,
Afshari
,
A.
,
Fojan
,
P.
, and
Gurevich
,
L.
,
2015
, “
The Effect of Surface Modification on Initial Ice Formation on Aluminum Surfaces
,”
Appl. Surf. Sci.
,
355
, pp.
327
333
.
12.
Oberli
,
L.
,
Caruso
,
D.
,
Hall
,
C.
,
Fabretto
,
M.
,
Murphy
,
P. J.
, and
Evans
,
D.
,
2014
, “
Condensation and Freezing of Droplets on Superhydrophobic Surfaces
,”
Adv. Colloid Interface Sci.
,
210
, pp.
47
57
.
13.
Na
,
B.
, and
Webb
,
R. L.
,
2003
, “
A Fundamental Understanding of Factors Affecting Frost Nucleation
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3797
3808
.
14.
Parent
,
O.
, and
Ilinca
,
A.
,
2011
, “
Anti-Icing and de-Icing Techniques for Wind Turbines: Critical Review
,”
Cold Regions Sci. Technol.
,
65
(
1
), pp.
88
96
.
15.
Shang
,
W.
,
Chen
,
H.
, and
Besant
,
R. W.
,
2005
, “
Frost Growth in Regenerative Wheels
,”
Heat Transfer
,
127
(
9
), pp.
1015
1026
.
16.
Mahmood
,
G.
, and., and
Simonson
,
C. J.
,
2012
, “
Frosting Conditions for an Energy Wheel in Laboratory Simulated Extreme Cold Weather
,”
Seventh International Cold Climate HVAC Conference
, Calgary, AB, Canada, Nov. 12–14, p.
9
.
17.
Sun
,
X. S.
, and
Rykaczewski
,
K.
,
2017
, “
Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect
,”
ACS Nano
,
11
(
1
), pp.
906
917
.
18.
Alonso
,
M. J.
,
Mathisen
,
H. M.
,
Aarnes
,
S.
, and
Liu
,
P.
,
2017
, “
Performance of a Lab-Scale Membrane-Based Energy Exchanger
,”
Appl. Therm. Eng.
,
111
, pp.
1244
1254
.
19.
Rafati Nasr
,
M.
,
Kassai
,
M.
,
Ge
,
G.
, and
Simonson
,
C. J.
,
2015
, “
Evaluation of Defrosting Methods for Air-to-Air Heat/Energy Exchangers on Energy Consumption of Ventilation
,”
Appl. Energy
,
151
, pp.
32
40
.
20.
Dalena
,
F.
,
Basile
,
A.
, and
Rossi
,
C.
,
2017
, “
Integration of Membrane Technologies Into Conventional Existing Systems in the Food Industry
,”
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen
,
Elsevier Science & Technology
, Sawston, England.
21.
Alzahrani
,
S.
, and
Mohammad
,
A. W.
,
2014
, “
Challenges and Trends in Membrane Technology Implementation for Produced Water Treatment: A Review
,”
J. Water Process Eng.
,
4
, pp.
107
133
.
22.
Yu
,
C.
,
Liu
,
Y.
,
Chen
,
G.
,
Gu
,
X.
, and
Xing
,
W.
,
2011
, “
Pretreatment of Isopropanol Solution From Pharmaceutical Industry and Pervaporation Dehydration by NaA Zeolite Membranes
,”
Chin. J. Chem. Eng.
,
19
(
6
), pp.
904
910
.
23.
Hamm
,
J. B. S.
,
Ambrosi
,
A.
,
Griebeler
,
J. G.
,
Marcilio
,
N. R.
,
Tessaro
,
I. C.
, and
Pollo
,
L. D.
,
2017
, “
Recent Advances in the Development of Supported Carbon Membranes for Gas Separation
,”
Int. J. Hydrogen Energy
,
42
(
39
), pp.
24830
24845
.
24.
Abdel-Salam
,
M. R.
,
Ge
,
G.
,
Fauchoux
,
M.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2014
, “
State-of-the-Art in Liquid-to-Air Membrane Energy Exchangers (LAMEEs): A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
700
728
.
25.
Wu
,
X.
,
Ma
,
Q.
,
Chua
,
F.
, and
Hu
,
S.
,
2016
, “
Phase Change Mass Transfer Model for Frost Growth and Densification
,”
Int. J. Heat Mass Transfer
,
96
, pp.
11
19
.
26.
Zhuang
,
D.
,
Ding
,
G.
,
Hu
,
H.
,
Fujino
,
H.
, and
Inoue
,
S.
,
2015
, “
Condensing Droplet Behaviors on Fin Surface Under Dehumidifying Condition—Part I: Numerical Model
,”
Appl. Therm. Eng.
,
105
, pp.
336
344
.
27.
Ge
,
G.
,
Mahmood
,
G. I.
,
Ghadiri Moghaddam
,
D.
,
Simonson
,
C. J.
,
Besant
,
R. W.
,
Hanson
,
S.
,
Erb
,
B.
, and
Gibson
,
P. W.
,
2014
, “
Material Properties and Measurements for Semi-Permeable Membranes Used in Energy Exchangers
,”
J. Membr. Sci.
,
453
, pp.
328
336
.
28.
Hemingson
,
H.
,
2010
, “
The Impacts of Outdoor Air Conditions and Non-Uniform Exchanger Channels on a Run-Around Membrane Energy Exchanger
,”
M.Sc. thesis
, University of Saskatchewan, Saskatoon, SK, Canada.http://hdl.handle.net/10388/etd-11052010-144743
29.
Talukdar
,
P.
,
Iskra
,
C. R.
, and
Simonson
,
C. J.
,
2008
, “
Combined Heat and Mass Transfer for Laminar Flow of Moist Air in a 3D Rectangular Duct: CFD Simulation and Validation With Experimental Data
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3091
3102
.
30.
Iskra
,
C. R.
,
2007
, “
Convective Mass Transfer Between a Hydrodynamically Developed Airflow and Liquid Water With and Without a Vapor Permeable Membrane
,”
M.Sc. thesis
, University of Saskatchewan, SK, Canada.http://hdl.handle.net/10388/etd-03262007-124559
31.
Fauchoux
,
M.
,
2012
, “
Design and Performance Testing of a Novel Ceiling Panel for Simultaneous Heat and Moisture Transfer to Moderate Indoor Temperature and Relative Humidity
,”
Ph.D. thesis
, University of Saskatchewan, Saskatoon, SK, Canada.http://hdl.handle.net/10388/ETD-2012-10-747
32.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho Young
,
I.
,
2007
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
33.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
, Hoboken, NJ.
34.
ASME
,
2013
, “Test Uncertainty,”
American Society of Mechanical Engineers
,
New York
, Standard No. PTC 19.1.
35.
Talukdar
,
P.
,
Osanyintola
,
O. F.
,
Olutimayin
,
S. O.
, and
Simonson
,
C. J.
,
2007
, “
An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data
,”
Int. J. Heat Mass Transfer
,
50
(23–24), pp.
4527
4539
.
You do not currently have access to this content.