Investigation of nano liquid-metal fluid (consists of liquid metal Ga and nanoparticles copper) as heat transfer medium in circular tube is performed for the first time. The numerical simulations of heat transfer enhancement of nano liquid-metal fluid in a circular tube subject to a constant wall heat flux are carried out, and the heat transfer performance is evaluated. The two-phase mixture model is used to simulate the flow of nanoparticles–liquid mixture for Reynolds number (Re) from 250 to 1000 and nanoparticle volume fraction (αp) from 0 to 0.1. The results show that the average heat transfer coefficient of nano liquid-metal fluid Ga–Cu is 23.8 times of that of nanofluid water–Cu at Re = 500 and αp = 0.04, and the average wall shear stress of Ga–Cu is 0.0154 Pa, whereas for water–Cu, it is 0.0259 Pa. As Re increases from 250 to 1000, the average heat transfer coefficient of water–Cu is improved by 40%, whereas for Ga–Cu, it is 45.4%. Based on the results in the paper, the nano liquid-metal fluid can be considered as an excellent heat transfer medium of forced convection in circular tube.

References

1.
Choi
,
U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Federation, International Mechanical Engineering Congress and Exhibition
, San Francisco, CA, Nov. 12–17, pp.
99
103
.
2.
Xuan
,
Y. M.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
3.
Maiga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.
4.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P. R.
,
2004
, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
497
511
.
5.
Maiga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.
6.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Micro-Heat Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2652
2661
.
7.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2006
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2457
2463
.
8.
Maiga
,
S. E. B.
,
Cong Tam
,
N.
,
Galanis
,
N.
,
Roy
,
G.
,
Mare
,
T.
, and
Coqueux
,
M.
,
2006
, “
Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
3
), pp.
275
292
.
9.
Palm
,
S. J.
,
Roy
,
G.
, and
Nguyen
,
C. T.
,
2006
, “
Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling Systems Considering Temperature Dependent Properties
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2209
2218
.
10.
Akbarinia
,
A.
, and
Behzadmehr
,
A.
,
2007
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1327
1337
.
11.
Behzadmehr
,
A.
,
Saffar-Avval
,
M.
, and
Galanis
,
N.
,
2007
, “
Prediction of Turbulent Forced Convection of a Nanofluid in a Tube With Uniform Heat Flux Using a Two Phase Approach
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
211
219
.
12.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. M.
, and
Vajjha
,
R. S.
,
2009
, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
290
302
.
13.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3632
3642
.
14.
Moghaddami
,
M.
,
Mohammadzade
,
A.
, and
Esfehani
,
S. A. V.
,
2011
, “
Second Law Analysis of Nanofluid Flow
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1397
1405
.
15.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4757
4767
.
16.
Bianco
,
V.
,
Nardini
,
S.
, and
Manca
,
O.
,
2011
, “
Enhancement of Heat Transfer and Entropy Generation Analysis of Nanofluids Turbulent Convection Flow in Square Section Tubes
,”
Nanoscale Res. Lett.
,
6
, pp.
1
12
.
17.
Bianco
,
V.
,
Nardini
,
S.
, and
Manca
,
O.
,
2014
, “
Entropy Generation Analysis of Turbulent Convection Flow of Al2O3-Water Nanofluid in a Circular Tube Subjected to Constant Wall Heat Flux
,”
Energy Convers. Manage.
,
77
, pp.
306
314
.
18.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2013
, “
Second Law Analysis of Al2O3-Water Nanofluid Turbulent Forced Convection in a Circular Cross Section Tube With Constant Wall Temperature
,”
Adv. Mech. Eng.
,
5
, p.
920278
.
19.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Effect of Uncertainties in Physical Properties on Entropy Generation Between Two Rotating Cylinders With Nanofluids
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101704
.
20.
Mahian
,
O.
,
Mahmud
,
S.
, and
Heris
,
S. Z.
,
2012
, “
Analysis of Entropy Generation Between Corotating Cylinders Using Nanofluids
,”
Energy
,
44
(
1
), pp.
438
446
.
21.
Leong
,
K. Y.
,
Saidur
,
R.
,
Mahlia
,
T. M. I.
, and
Yau
,
Y. H.
,
2012
, “
Entropy Generation Analysis of Nanofluid Flow in a Circular Tube Subjected to Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1169
1175
.
22.
Leong
,
K. Y.
,
Saidur
,
R.
,
Khairulmaini
,
M.
,
Michael
,
Z.
, and
Kamyar
,
A.
,
2012
, “
Heat Transfer and Entropy Analysis of Three Different Types of Heat Exchangers Operated With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
838
843
.
23.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
(
3
), pp.
252
256
.
24.
Manninen
,
M.
,
Taivassalo
,
V.
, and
Kallio
,
S.
,
1996
, “
On the Mixture Model for Multiphase Flow
,”
VTT Publ.
,
288
(
3
), pp.
9
18
.http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf
25.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z Ver. Deutsch Ing.
,
77
, pp.
318
320
.
26.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
27.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.
28.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Performance Analysis of Turbulent Convection Heat Transfer of Al2O3 Water-Nanofluid in Circular Tubes at Constant Wall Temperature
,”
Energy
,
77
, pp.
403
413
.
29.
Roy
,
G.
,
Gherasim
,
I.
,
Nadeau
,
F.
,
Poitras
,
G.
, and
Nguyen
,
C. T.
,
2012
, “
Heat Transfer Performance and Hydrodynamic Behavior of Turbulent Nanofluid Radial Flows
,”
Int J. Therm. Sci.
,
58
, pp.
120
129
.
You do not currently have access to this content.