This study investigates the convective heat transfer of a hybrid nanofluid filled in a triangular cavity subjected to a constant magnetic field and heated by a constant heat flux element from below. The inclined side of the cavity is cooled isothermally while the remaining sides are thermally insulated. The finite difference method with the stream function-vorticity formulation of the governing equations has been utilized in the numerical solution. The problem is governed by several pertinent parameters namely, the size and position of the heater element, B = 0.2–0.8 and D = 0.3–0.7, respectively, the Rayleigh number, Ra = 102–106, the Hartmann number, Ha = 0–100, the volume fraction of the suspended nanoparticles, ϕ = 0–0.2, and the heat generation parameter Q = 0–6. The results show significant effect of increasing the volume fraction of the hybrid nanofluid when the natural convection is very small. Moreover, the hybrid nanofluid composed of equal quantities of Cu and Al2O3 nanoparticles dispersed in water base fluid has no significant enhancement on the mean Nusselt number compared with the regular nanofluid.

References

1.
Singh
,
D.
,
Toutbort
,
J.
, and
Chen
,
G.
,
2006
, “Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation,” Annual Report, Argonne National Laboratory, Washington, DC, Report No.
FY 2006
.
2.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition, San Francisco
, CA, Nov. 12--17, Paper No. CONF-951135-29.
3.
Yu
,
W.
, and
Xie
,
H.
, 2012, “
A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications
,”
J. Nanomater.
,
2012
, p.
435873
.
4.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
5.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.
6.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.
7.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
8.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
9.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
10.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
,
2007
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.
11.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.
12.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
,
2008
, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
657
665
.
13.
Arefmanesh
,
A.
,
Amini
,
M.
,
Mahmoodia
,
M.
, and
Najafi
,
M.
,
2012
, “
Buoyancy-Driven Heat Transfer Analysis in Two-Square Duct Annuli Filled With a Nanofluid
,”
Eur. J. Mech. B
,
33
, pp.
95
104
.
14.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2016
, “
Conjugate Natural Convection in a Cavity With a Conductive Partition and Filled With Different Nanofluids on Different Sides of the Partition
,”
J. Mol. Liq.
,
216
, pp.
67
77
.
15.
Oztop
,
H. F.
,
Estellé
,
P.
,
Yan
,
W. M.
,
Al-Salem
,
K.
,
Orfi
,
J.
, and
Mahian
,
O.
,
2015
, “
A Brief Review of Natural Convection in Enclosures Under Localized Heating With and Without Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
60
, pp.
37
44
.
16.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
17.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
, and
Soleimani
,
S.
,
2014
, “
Natural Convection Heat Transfer in a Cavity With Sinusoidal Wall Filled With CuO–Water Nanofluid in Presence of Magnetic Field
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
1
), pp.
40
49
.
18.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2015
, “
Magnetic Field and Slip Effects on Free Convection Inside a Vertical Enclosure Filled With Alumina/Water Nanofluid
,”
Chem. Eng. Res. Des.
,
94
, pp.
355
364
.
19.
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2016
, “
MHD Natural Convection in an Inclined Wavy Cavity With Corner Heater Filled With a Nanofluid
,”
J. Magn. Magn. Mater.
,
416
, pp.
37
47
.
20.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2013
, “
Conjugate Heat Transfer in a Porous Cavity filled With Nanofluids and Heated by a Triangular Thick Wall
,”
Int. J. Therm. Sci.
,
67
, pp.
135
151
.
21.
Chamkha
,
A. J.
,
Ismael
,
M. A.
,
Kasaeipoor
,
A.
, and
Armaghani
,
T.
,
2016
, “Entropy Generation and Natural Convection of CuO-Water Nanofluid in C-Shaped Cavity Under Magnetic Field,”
Entropy
,
18
(
2
), p.
50
.
22.
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2015
, “
Conjugate Natural Convection in a Differentially Heated Composite Enclosure Filled With a Nanofluid
,”
J. Porous Media
,
18
(
7
), pp.
699
716
.
23.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Brownian Motion of Nanoparticles in a Triangular Enclosure With Natural Convection
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
931
940
.
24.
Sun
,
Q.
, and
Pop
,
I.
,
2011
, “
Free Convection in a Triangle Cavity Filled With a Porous Medium Saturated With Nanofluids With Flush Mounted Heater on the Wall
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2141
2153
.
25.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2011
, “
Enhanced Natural Convection in an Isosceles Triangular Enclosure Filled With a Nanofluid
,”
Comput. Math. Appl.
,
61
(
7
), pp.
1739
1753
.
26.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Free Convection in a Triangular Cavity Filled With a Porous Medium Saturated by a Nanofluid
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
5
), pp.
1138
1161
.
27.
Bondareva
,
N. S.
,
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2017
, “
Entropy Generation Due to Natural Convection of a Nanofluid in a Partially Open Triangular Cavity
,”
Adv. Powder Technol.
,
28
(
1
), pp.
244
255
.
28.
Han
,
Z. H.
,
Yang
,
B.
,
Kim
,
S. H.
, and
Zachariah
,
M. R.
,
2007
, “
Application of Hybrid Sphere/Carbon Nanotube Particles in Nanofluids
,”
Nanotechnol.
,
18
(
10
), p.
105701
.
29.
Jan
,
S.
,
Khojin
,
A. S.
, and
Zhong
,
W. H.
,
2007
, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochim Acta
,
462
(1–2), pp.
45
55
.
30.
Paul
,
G.
,
Philip
,
J.
,
Raj
,
B.
,
Das
,
P. K.
, and
Manna
,
I.
,
2011
, “
Synthesis, Characterization, and Thermal Property Measurement of Nano-Al95Zn05 Dispersed Nanofluid Prepared by a Two-Step Process
,”
Int. J. Heat Mass Transf.
,
54
(
15–16
), pp.
3783
3788
.
31.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
32.
Ho
,
C. J.
,
Huang
,
J. B.
,
Tsai
,
P. S.
, and
Yang
,
Y. M.
,
2010
, “
Preparation and Properties of Hybrid Water Based Suspension of Al2O3 Nanoparticles and MEPCM Particles as Functional Forced Convection Fluid
,”
Int. Commun. Heat Mass Transf.
,
37
(
5
), pp.
490
494
.
33.
Botha
,
S. S.
,
Ndungu
,
P.
, and
Bladergroen
,
B. J.
,
2011
, “
Physicochemical Properties of Oil Based Nanofluids Containing Hybrid Structures of Silver Nanoparticle Supported on Silica
,”
Ind. Eng. Chem. Res.
,
50
(
6
), pp.
3071
3077
.
34.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
.
35.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity
,”
J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041004
.
36.
Armaghani
,
T.
,
Kasaeipoor
,
A.
,
Alavi
,
N.
, and
Rashidi
,
M. M.
,
2016
, “
Numerical Investigation of Water-Alumina Nanofluid Natural Convection Heat Transfer and Entropy Generation in a Baffled L Shaped Cavity
,”
J. Mol. Liq.
,
223
, pp.
243
251
.
37.
Amir Houshang
,
M.
,
Ioan
,
P.
,
Mina
,
S.
, and
Farhad
,
T.
,
2013
, “
MHD Natural Convection and Entropy Generation in a Trapezoidal Enclosure Using Cu–Water Nanofluid
,”
Comput. Fluids
,
72
, pp.
46
62
.
38.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water-Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B
,
36
, pp.
82
96
.
39.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.
40.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localized Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech. B
,
28
(
5
), pp.
630
640
.
You do not currently have access to this content.