The problem of flow maldistribution is very critical in microchannel heat sinks (MCHS). It induces temperature nonuniformity, which may ultimately lead to the breakdown of associated system. In the present communication, a novel approach for the mitigation of flow maldistribution problem in parallel MCHS has been proposed using variable width microchannels. Numerical simulation of copper made parallel MCHS consisting of 25 channels has been carried out for the conventional design (CD) and the proposed design (PD). It is observed that the PD reduces flow maldistribution by 93.7%, which facilitated in effective uniform cooling across the entire projected area of MCHS. Temperature fluctuation at fluid–solid interface is reduced by 4.3 °C, whereas maximum and average temperatures of microchannels projected area are reduced by 2.3 °C and 1.1 °C, respectively. PD is suitable in alleviating flow maldistribution problem for the extended range of off design conditions.

References

1.
Guo
,
Z. Y.
,
2000
, “
Frontier of Heat Transfer-Microscale Heat Transfer
,”
Adv. Mech.
,
30
(1), pp.
1
3
(in Chinese).
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
3.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2010
, “
A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2694
2702
.
4.
Pop
,
E.
, and
Goodson
,
K. E.
,
2006
, “
Thermal Phenomena in Nanoscale Transistors
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
102
108
.
5.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Lincon Lab. J.
,
1
(
1
), pp.
31
47
.
6.
El-Masri
,
M. A.
, and
Louis
,
J. F.
,
1978
, “
On the Design of High-Temperature Gas Turbine Blade Water Cooling Channels
,”
ASME J. Eng. Power
,
100
(
4
), pp.
586
591
.
7.
Boyd
,
R. D.
,
1985
, “
Subcooled Flow Boiling Critical Heat Flux and Its Application to Fusion Energy Components—Part 1: A Review of Fundamentals of CHF and Related Data Base
,”
Fusion Technol.
,
7
(1), pp.
7
30
.
8.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Low-Temperature Two-Phase Microchannel Cooling for High Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
453
465
.
9.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sink—Part 1: Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
,
51
(
16–17
), pp.
4315
4326
.
10.
Berthier
,
J.
,
Brakke
,
K. A.
,
Furlani
,
E. P.
,
Karampelas
,
I. H.
,
Poher
,
V.
,
Gosselin
,
D.
,
Cubizolles
,
M.
, and
Pouteau
,
P.
,
2015
, “
Whole Blood Spontaneous Capillary Flow in Narrow V-Groove Microchannels
,”
Sens. Actuators, B
,
206
, pp.
258
267
.
11.
Ran
,
J.
,
Li
,
L.
,
Du
,
X.
,
Wang
,
R.
,
Pan
,
W.
, and
Tang
,
W.
,
2015
, “
Numerical Investigations on Characteristics of Methane Catalytic Combustion in Micro-Channels With a Concave or Convex Wall Cavity
,”
Energy Convers. Manage
,
97
, pp.
188
195
.
12.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
13.
Kandlikar
,
S. G.
,
2012
, “
History, Advances and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
14.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.
15.
Shojaeian
,
M.
, and
Kosar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.
16.
Narain
,
A.
,
Prasad
,
H. R.
, and
Koca
,
A.
,
2016
, “
Internal Annular Flow-Boiling and Flow-Condensation: Context, Results and Recommendations
,”
Handbook of Thermal Science and Engineering
, Springer International Publishing, Cham, Switzerland, Chap. 51-1.
17.
Mikielewicz
,
D.
,
Andrzejczyk
,
R.
,
Jakubowska
,
B.
, and
Mikielewicz
,
J.
,
2016
, “
Analytical Model With Nonadiabatic Effects for Pressure Drop and Heat Transfer During Boiling and Condensation Flows in Conventional Channels and Minichannels
,”
Heat Transfer Eng.
,
37
(
13–14
), pp.
1158
1171
.
18.
Ghani
,
I. A.
,
Sidik
,
N. A.
, and
Kamaruzaman
,
N.
,
2017
, “
Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design
,”
Int. J. Heat Mass Transfer
,
107
, pp.
21
44
.
19.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.
20.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.
21.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
,
Li
,
J.
, and
Qi
,
J.
,
2013
, “
Optimum Thermal Design of Interrupted Microchannel Heat Sink With Rectangular Ribs in the Transverse Microchambers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
880
889
.
22.
Ghaedamini
,
H.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2013
, “
Developing Forced Convection in Converging-Diverging Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
491
499
.
23.
Dehghan
,
M.
,
Daneshipour
,
M.
,
Valipour
,
M. S.
,
Rafee
,
R.
, and
Saedodin
,
S.
,
2015
, “
Enhancing Heat Transfer in Microchannel Heat Sinks Using Converging Flow Passages
,”
Energy Convers. Manage.
,
92
, pp.
244
250
.
24.
Leng
,
C.
,
Wang
,
X. D.
, and
Wang
,
T. H.
,
2015
, “
An Improved Design of Double-Layered Microchannel Heat Sink With Truncated Top Channels
,”
Appl. Therm. Eng.
,
79
, pp.
54
62
.
25.
Li
,
P.
,
Zhang
,
D.
,
Xie
,
Y.
, and
Xie
,
G.
,
2016
, “
Flow Structure and Heat Transfer of Non-Newtonian Fluids in Microchannel Heat Sinks With Dimples and Protrusions
,”
Appl. Therm. Eng.
,
94
, pp.
50
58
.
26.
Yadav
,
V.
,
Baghel
,
K.
,
Kumar
,
R.
, and
Kadam
,
S. T.
,
2016
, “
Numerical Investigation of Heat Transfer in Extended Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
612
622
.
27.
Mohammadi
,
A.
, and
Kosar
,
A.
,
2016
, “
Hydrodynamic and Thermal Performance of Microchannels With Different Inline Arrangements of Cylindrical Micropin Fins
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122403
.
28.
Mirzaei
,
M.
, and
Dehghan
,
M.
,
2013
, “
Investigation of Flow and Heat Transfer of Nanofluid in Microchannel With Variable Property Approach
,”
Heat Mass Transfer
,
49
(
12
), pp.
1803
1811
.
29.
Dehghan
,
M.
,
Valipour
,
M. S.
, and
Saedodin
,
S.
,
2016
, “
Microchannels Enhanced by Porous Materials: Heat Transfer Enhancement or Pressure Drop Increment?
,”
Energy Convers. Manage.
,
110
, pp.
22
32
.
30.
Dehghan
,
M.
,
Valipour
,
M. S.
,
Saedodin
,
S.
, and
Mahmoudi
,
Y.
,
2016
, “
Investigation of Forced Convection Through Entrance Region of a Porous-Filled Microchannel: An Analytical Study Based on the Scale Analysis
,”
Appl. Therm. Eng.
,
99
, pp.
446
454
.
31.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
,
2007
, “
Experimental Study on the Effect of Stabilization on Flow Boiling Heat Transfer in Microchannels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
746
752
.
32.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means or Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.
33.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Boiling Flow Through Diverging Microchannel
,”
Sadhana
,
38
(
6
), pp.
1067
1082
.
34.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
234
252
.
35.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.
36.
Law
,
M.
, and
Lee
,
P. S.
,
2015
, “
A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Characteristics in Straight and Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transfer
,
85
, pp.
797
810
.
37.
Mikielewicz
,
D.
,
Klugmann
,
M.
, and
Wajs
,
J.
,
2013
, “
Flow Boiling Intensification in Minichannels by Means of Mechanical Flow Turbulising Inserts
,”
Int. J. Therm. Sci.
,
65
, pp.
79
91
.
38.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Microchannel Heat Sinks—II: Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2773
2784
.
39.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.
40.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2008
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
789
806
.
41.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.
42.
Revellin
,
R.
, and
Thome
,
J. R.
,
2008
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1216
1225
.
43.
Kadam
,
S. T.
,
Baghel
,
K.
, and
Kumar
,
R.
,
2014
, “
Simplified Model for Prediction of Bubble Growth at Nucleation Site in Microchannels
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061502
.
44.
Lu
,
M. C.
, and
Wang
,
C. C.
,
2006
, “
Effect of Inlet Location on the Performance of Parallel-Channel Cold Plate
,”
IEEE Trans. Compon. Package. Technol.
,
29
(1), pp.
30
38
.
45.
Chein
,
R.
, and
Chen
,
J.
,
2009
, “
Numerical Study of the Inlet/Outlet Arrangement Effect on Microchannel Heat Sink Performance
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1627
1638
.
46.
Minqiang
,
P.
,
Dehvai
,
Z.
,
Yong
,
T.
, and
Dongqing
,
C.
,
2009
, “
CFD Based Study of Velocity Distribution Among Multiple Parallel Microchannels
,”
J. Comput.
,
4
(
11
), pp.
1133
1138
.
47.
Kumaraguruparan
,
G.
,
Kumaran
,
R. M.
,
Sornakumar
,
T.
, and
Sundarajan
,
T.
,
2011
, “
A Numerical and Experimental Investigation of Flow Maldistribution in a Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1349
1353
.
48.
Kumaran
,
R. M.
,
Kumaraguruparan
,
G.
, and
Sornakumar
,
T.
,
2013
, “
Experimental and Numerical Studies of Header Design and Inlet/Outlet Configurations on Flow Mal-Distribution in Parallel Micro-Channels
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
205
216
.
49.
Siva
,
V. M.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2014
, “
Investigation on Flow Maldistribution in Parallel Microchannel Systems for Integrated Microelectronic Device Cooling
,”
IEEE Trans. Compon. Package. Technol.
,
4
(
3
), pp.
438
450
.
50.
Xia
,
G. D.
,
Jiang
,
J.
,
Wang
,
J.
,
Zhai
,
Y. L.
, and
Ma
,
D. D.
,
2015
, “
Effects of Different Geometric Structures on Fluid Flow and Heat Transfer Performance in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
80
, pp.
439
447
.
51.
Anbumeenakshi
,
C.
, and
Thansekhar
,
M. R.
,
2016
, “
Experimental Investigation of Header Shape and Inlet Configuration on Flow Maldistribution in Microchannel
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
156
161
.
52.
Pramuditya, S., 2011, “Water Thermodynamic Properties,” Pramuditya, S., Bandung, Indonesia, accessed May 6, 2017, https://syeilendrapramuditya.wordpress.com/2011/08/20/water-thermodynamic-properties/
53.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
54.
Shah
,
R. K.
, and
London
,
A. K.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press, New York
.
55.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
56.
Phillips
,
R. J.
,
1987
, “
Microchannel Heat Sinks
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.