A comparative experimental and numerical study has been done on multiple-jet impingement heat transfer in narrow channels with different pin fin configurations on the target surfaces. Three different target plates including a flat plate, a plate with full-height pin fins, and another plate with miniature pin fins are investigated in the jet impingement cooling systems comparatively. The experiments were done under maximum cross flow scheme for the jet Reynolds numbers from 15,000 to 30,000. Narrow jet impingement spacing is kept the same as 1.5 times jet diameter for all the target plates. In the experiments, detailed jet impingement heat transfer characteristics on the flat plate and the full-height pin-fin plate were obtained by using the transient liquid crystal thermography technique, and additionally steady experiments were done to obtain the overall heat transfer performance of the jet impingement systems with all the three different target plates, which accounts for the heat transfer contribution from the pin fins' surface. Significant overall jet impingement heat transfer enhancement can be obtained with full-height pin-fin roughened surfaces with appreciable pressure loss; however, with miniature pin fins on the target plate, the jet impingement overall heat transfer performance can be remarkably improved with negligible pressure loss penalty. Furthermore, three-dimensional (3D) computational fluid dynamics (CFD) analysis was done to analyze the detailed flow structure and heat transfer characteristics in the jet impingement systems with different pin fin configurations.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor and Francis
,
New York
.
2.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
147
161
.
3.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement: A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
4.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.
5.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
6.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
7.
Annerfeldt
,
M.-O.
,
Persson
,
J.-L.
, and
Torisson
,
T.
,
2001
, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,”
ASME
Paper No. 2001-GT-0149.
8.
Son
,
C.
,
Dailey
,
G.
,
Ireland
,
P.
, and
Gillespie
,
D.
,
2005
, “
An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System
,”
ASME
Paper No. GT2005-68504.
9.
Azad
,
G.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2002
, “
Jet Impingement Heat Transfer on Pinned Surface Using a Transient Liquid Crystal Technique
,”
Int. J. Rot. Mach.
,
8
(
3
), pp.
161
173
.
10.
El-Gabry
,
L. A.
, and
Kaninski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transferdistribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
11.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
12.
Wan
,
C.
,
Rao
,
Y.
, and
Zang
,
S.
,
2013
, “
Numerical Investigation of Impingement Heat Transfer on a Flat and Square Pin-Fin Roughened Plates
,”
ASME
Paper No. GT2013-94473.
13.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
693
.
14.
Brakmann
,
R.
,
Chen
,
L.
,
Weigand
,
B.
, and
Crawford
,
M.
,
2016
, “
Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins
,”
ASME J. Turbomach.
,
138
(
11
), p.
111010
.
15.
Ligrani
,
P. M.
,
Ren
,
Z.
, and
Buzzard
,
W. C.
,
2017
, “
Impingement Jet Array Heat Transfer With Small-Scale Cylinder Target Surface Roughness Arrays
,”
Int. J. Heat Mass Transfer
,
107
, pp.
895
905
.
16.
Devore
,
M. A.
, and
Paauwe
,
C. S.
,
2009
, “
Turbine Airfoil With Improved Cooling
,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
7600966 B2
.
17.
Bunker
,
R. S.
, and
Wallace
,
T. T.
,
1994
, “
Turbine Airfoil With Double Shell Outer Wall
,” General Electric Company, Boston, MA, U.S. Patent No.
5328331
.
18.
Rao
,
Y.
,
Wan
,
C.
,
Liu
,
Y.
, and
Qin
,
J.
,
2016
, “
An Experimental Investigation of Impingement Heat Transfer in Narrow Space With Full-Height Pin Fins
,”
ASME
Paper No. GT2016-57578.
19.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distribution of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.
20.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
22.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.
23.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
You do not currently have access to this content.