This paper presents an analytical solution for the Joule heating problem of a segmented wire made of two materials with different properties and suspended as a bridge across two fixed ends. The paper first establishes the one-dimensional (1D) governing equations of the steady-state temperature distribution along the wire with the consideration of heat conduction and free-heat convection phenomena. The temperature coefficient of resistance of the constructing materials and the dimension of the each segmented wires were also taken into account to obtain analytical solution of the temperature. COMSOL numerical solutions were also obtained for initial validation. Experimental studies were carried out using copper and nichrome wires, where the temperature distribution was monitored using an IR thermal camera. The data showed a good agreement between experimental data and the analytical data, validating our model for the design and development of thermal sensors based on multisegmented structures.

References

1.
Balakrishnan
,
V.
,
Phan
,
H.-P.
,
Dinh
,
T.
,
Dao
,
D. V.
, and
Nguyen
,
N.-T.
,
2017
, “
Thermal Flow Sensors for Harsh Environments
,”
Sensors
,
17
(
9
), p.
2061
.
2.
Dinh
,
T.
,
Phan
,
H.-P.
,
Qamar
,
A.
,
Woodfield
,
P.
,
Nguyen
,
N.-T.
, and
Dao
,
D. V.
,
2017
, “
Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications
,”
J. Microelectromech. Syst.
,
26
(
5
), pp.
966
986
.
3.
Nguyen
,
N.
,
Bochnia
,
D.
,
Kiehnscherf
,
R.
, and
Dötzel
,
W.
,
1996
, “
Investigation of Forced Convection in Microfluid Systems
,”
Sens. Actuators A
,
55
(
1
), pp.
49
55
.
4.
Ali
,
S. Z.
,
Udrea
,
F.
,
Milne
,
W. I.
, and
Gardner
,
J. W.
,
2008
, “
Tungsten-Based SOI Microhotplates for Smart Gas Sensors
,”
J. Microelectromech. Syst.
,
17
(
6
), pp.
1408
1417
.
5.
Dibbern
,
U.
,
1990
, “
A Substrate for Thin-Film Gas Sensors in Microelectronic Technology
,”
Sens. Actuators B
,
2
(
1
), pp.
63
70
.
6.
Suehle
,
J. S.
,
Cavicchi
,
R. E.
,
Gaitan
,
M.
, and
Semancik
,
S.
,
1993
, “
Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing
,”
IEEE Electron Device Lett.
,
14
(
3
), pp.
118
120
.
7.
Horrillo
,
M.
,
Sayago
,
I.
,
Arés
,
L.
,
Rodrigo
,
J.
,
Gutiérrez
,
J.
,
Götz
,
A.
,
Gracia
,
I.
,
Fonseca
,
L.
,
Cané
,
C.
, and
Lora-Tamayo
,
E.
,
1999
, “
Detection of Low NO2 Concentrations With Low Power Micromachined Tin Oxide Gas Sensors
,”
Sens. Actuators B
,
58
(
1
), pp.
325
329
.
8.
Chan
,
P. C.
,
Yan
,
G.-Z.
,
Sheng
,
L.-Y.
,
Sharma
,
R. K.
,
Tang
,
Z.
,
Sin
,
J. K.
,
Hsing
,
I.-M.
, and
Wang
,
Y.
,
2002
, “
An Integrated Gas Sensor Technology Using Surface Micro-Machining
,”
Sens. Actuators B
,
82
(
2
), pp.
277
283
.
9.
Elmi
,
I.
,
Zampolli
,
S.
,
Cozzani
,
E.
,
Passini
,
M.
,
Cardinali
,
G.
, and
Severi
,
M.
, 2006, “
Development of Ultra Low Power Consumption Hotplates for Gas Sensing Applications
,” Fifth
IEEE
Conference on Sensors,
Daegu, South Korea, Oct. 22–25, pp.
243
246
.
10.
Fürjes
,
P.
,
Dücső
,
C.
,
Ádám
,
M.
,
Zettner
,
J.
, and
Bársony
,
I.
,
2004
, “
Thermal Characterisation of Micro-Hotplates Used in Sensor Structures
,”
Superlattices Microstruct.
,
35
(
3
), pp.
455
464
.
11.
Yadav
,
J.
,
Mishra
,
V. V.
, and
Prasad
,
M.
,
2014
, “
Design and Partial Fabrication of Low Power Pt-Based Microheater for Gas Sensing Application
,”
INROADS Int. J. Jaipur Natl. Univ.
,
3
(
1 s
), pp.
261
265
.
12.
Harley-Trochimczyk
,
A.
,
Chang
,
J.
,
Zhou
,
Q.
,
Dong
,
J.
,
Pham
,
T.
,
Worsley
,
M. A.
,
Maboudian
,
R.
,
Zettl
,
A.
, and
Mickelson
,
W.
,
2015
, “
Catalytic Hydrogen Sensing Using Microheated Platinum Nanoparticle-Loaded Graphene Aerogel
,”
Sens. Actuators B
,
206
, pp.
399
406
.
13.
Glaninger
,
A.
,
Jachimowicz
,
A.
,
Kohl
,
F.
,
Chabicovsky
,
R.
, and
Urban
,
G.
,
2000
, “
Wide Range Semiconductor Flow Sensors
,”
Sens. Actuators A
,
85
(
1
), pp.
139
146
.
14.
Bedö
,
G.
,
Fannasch
,
H.
, and
Müller
,
R.
,
2000
, “
A Silicon Flow Sensor for Gases and Liquids Using AC Measurements
,”
Sens. Actuators A
,
85
(
1
), pp.
124
132
.
15.
Hung
,
S.-T.
,
Wong
,
S.-C.
, and
Fang
,
W.
,
2000
, “
The Development and Application of Microthermal Sensors With a Mesh-Membrane Supporting Structure
,”
Sens. Actuators A
,
84
(
1
), pp.
70
75
.
16.
Robadey
,
J.
,
Paul
,
O.
, and
Baltes
,
H.
,
1995
, “
Two-Dimensional Integrated Gas Flow Sensors by CMOS IC Technology
,”
J. Micromech. Microeng.
,
5
(
3
), p.
243
.
17.
Dai
,
C.-L.
,
2007
, “
A Capacitive Humidity Sensor Integrated With Micro Heater and Ring Oscillator Circuit Fabricated by CMOS–MEMS Technique
,”
Sens. Actuators B
,
122
(
2
), pp.
375
380
.
18.
Dai
,
C.-L.
,
Liu
,
M.-C.
,
Chen
,
F.-S.
,
Wu
,
C.-C.
, and
Chang
,
M.-W.
,
2007
, “
A Nanowire WO 3 Humidity Sensor Integrated With Micro-Heater and Inverting Amplifier Circuit on Chip Manufactured Using CMOS-MEMS Technique
,”
Sens. Actuators B
,
123
(
2
), pp.
896
901
.
19.
Wang
,
B.
,
2012
, “MEMS-Based Temperature-Dependent Characterization of Biomolecular Interactions,”
Ph.D., thesis
, Columbia University, New York.
20.
Placinta
,
M.
,
Shen
,
M.-C.
,
Achermann
,
M.
, and
Karlstrom
,
R. O.
,
2009
, “
A Laser Pointer Driven Microheater for Precise Local Heating and Conditional Gene Regulation In Vivo. Microheater Driven Gene Regulation in Zebrafish
,”
BMC Dev. Biol.
,
9
(
1
), p.
73
.
21.
Hwang
,
W.-J.
,
Shin
,
K.-S.
,
Roh
,
J.-H.
,
Lee
,
D.-S.
, and
Choa
,
S.-H.
,
2011
, “
Development of Micro-Heaters With Optimized Temperature Compensation Design for Gas Sensors
,”
Sensors
,
11
(
3
), pp.
2580
2591
.
22.
Balakrishnan
,
V.
,
Dinh
,
T.
,
Phan
,
H.-P.
,
Kozeki
,
T.
,
Namazu
,
T.
,
Dao
,
D. V.
, and
Nguyen
,
N.-T.
,
2017
, “
Steady-State Analytical Model of Suspended p-Type 3C–SiC Bridges Under Consideration of Joule Heating
,”
J. Micromech. Microeng.
,
27
(
7
), p.
075008
.
23.
Belmonte
,
J. C.
,
Puigcorbe
,
J.
,
Arbiol
,
J.
,
Vila
,
A.
,
Morante
,
J.
,
Sabate
,
N.
,
Gracia
,
I.
, and
Cane
,
C.
,
2006
, “
High-Temperature Low-Power Performing Micromachined Suspended Micro-Hotplate for Gas Sensing Applications
,”
Sens. Actuators B
,
114
(
2
), pp.
826
835
.
24.
Tsamis
,
C.
,
Nassiopoulou
,
A.
, and
Tserepi
,
A.
,
2003
, “
Thermal Properties of Suspended Porous Silicon Micro-Hotplates for Sensor Applications
,”
Sens. Actuators B
,
95
(
1
), pp.
78
82
.
25.
Afridi
,
M. Y.
,
Suehle
,
J. S.
,
Zaghloul
,
M. E.
,
Berning
,
D. W.
,
Hefner
,
A. R.
,
Cavicchi
,
R. E.
,
Semancik
,
S.
,
Montgomery
,
C. B.
, and
Taylor
,
C. J.
,
2002
, “
A Monolithic CMOS Microhotplate-Based Gas Sensor System
,”
IEEE Sens. J.
,
2
(
6
), pp.
644
655
.
26.
Zhou
,
Q.
,
Sussman
,
A.
,
Chang
,
J.
,
Dong
,
J.
,
Zettl
,
A.
, and
Mickelson
,
W.
,
2015
, “
Fast Response Integrated MEMS Microheaters for Ultra Low Power Gas Detection
,”
Sens. Actuators A
,
223
, pp.
67
75
.
27.
Phan
,
H.-P.
,
Dinh
,
T.
,
Kozeki
,
T.
,
Qamar
,
A.
,
Namazu
,
T.
,
Dimitrijev
,
S.
,
Nguyen
,
N.-T.
, and
Dao
,
D. V.
,
2016
, “
Piezoresistive Effect in p-Type 3C-SiC at High Temperatures Characterized Using Joule Heating
,”
Sci. Rep.
,
6
, p.
28499
.
28.
Briand
,
D.
,
Heimgartner
,
S.
,
Grétillat
,
M.-A.
,
van der Schoot
,
B.
, and
de Rooij
,
N. F.
,
2002
, “
Thermal Optimization of Micro-Hotplates That Have a Silicon Island
,”
J. Micromech. Microeng.
,
12
(
6
), p.
971
.
29.
Dumitrescu
,
M.
,
Cobianu
,
C.
,
Lungu
,
D.
,
Dascalu
,
D.
,
Pascu
,
A.
,
Kolev
,
S.
, and
van den Berg
,
A.
,
1999
, “
Thermal Simulation of Surface Micromachined Polysilicon Hot Plates of Low Power Consumption
,”
Sens. Actuators A
,
76
(
1
), pp.
51
56
.
30.
Faglia
,
G.
,
Comini
,
E.
,
Pardo
,
M.
,
Taroni
,
A.
,
Cardinali
,
G.
,
Nicoletti
,
S.
, and
Sberveglieri
,
G.
,
1999
, “
Micromachined Gas Sensors for Environmental Pollutants
,”
Microsyst. Technol.
,
6
(
2
), pp.
54
59
.
31.
Iwaki
,
T.
,
Covington
,
J.
,
Udrea
,
F.
,
Ali
,
S.
,
Guha
,
P.
, and
Gardner
,
J.
, 2005, “
Design and Simulation of Resistive SOI CMOS Micro-Heaters for High Temperature Gas Sensors
,”
J. Phys. Conf. Ser.
,
15
, pp. 27–32.
32.
Swart
,
N. R.
, and
Nathan
,
A.
,
1994
, “
Coupled Electrothermal Modeling of Microheaters Using SPICE
,”
IEEE Trans. Electron Devices
,
41
(
6
), pp.
920
925
.
33.
Saxena
,
G.
, and
Paily
,
R.
,
2013
, “
Analytical Modeling of Square Microhotplate for Gas Sensing Application
,”
IEEE Sens. J.
,
13
(
12
), pp.
4851
4859
.
34.
Ansari
,
M. Z.
, and
Cho
,
C.
,
2012
, “
A Conduction–Convection Model for Self-Heating in Piezoresistive Microcantilever Biosensors
,”
Sens. Actuators A
,
175
, pp.
19
27
.
35.
Khan
,
U.
, and
Falconi
,
C.
,
2013
, “
Temperature Distribution in Membrane-Type Micro-Hot-Plates With Circular Geometry
,”
Sens. Actuators B
,
177
, pp.
535
542
.
36.
Kozlov
,
A. G.
,
2002
, “
Analytical Modelling of Steady-State Temperature Distribution in Thermal Microsensors Using Fourier Method—Part 1: Theory
,”
Sens. Actuators A
,
101
(
3
), pp.
283
298
.
37.
Csendes
,
A.
,
Szekely
,
V.
, and
Rencz
,
M.
,
1998
, “
An Efficient Thermal Simulation Tool for ICs, Microsystem Elements and MCMs: The μS-THERMANAL
,”
Microelectron. J.
,
29
(
4
), pp.
241
255
.
38.
Fangohr
,
H.
,
Chernyshenko
,
D. S.
,
Franchin
,
M.
,
Fischbacher
,
T.
, and
Meier
,
G.
,
2011
, “
Joule Heating in Nanowires
,”
Phys. Rev. B
,
84
(
5
), p.
054437
.
39.
Xu
,
S.
,
Lao
,
C.
,
Weintraub
,
B.
, and
Wang
,
Z. L.
,
2008
, “
Density-Controlled Growth of Aligned ZnO Nanowire Arrays by Seedless Chemical Approach on Smooth Surfaces
,”
J. Mater. Res.
,
23
(
8
), pp.
2072
2077
.
40.
Tohmyoh
,
H.
,
Imaizumi
,
T.
,
Hayashi
,
H.
, and
Saka
,
M.
,
2007
, “
Welding of Pt Nanowires by Joule Heating
,”
Scr. Mater.
,
57
(
10
), pp.
953
956
.
41.
Gu
,
G.
,
Zheng
,
B.
,
Han
,
W.
,
Roth
,
S.
, and
Liu
,
J.
,
2002
, “
Tungsten Oxide Nanowires on Tungsten Substrates
,”
Nano Lett.
,
2
(
8
), pp.
849
851
.
42.
Tohmyoh
,
H.
,
Tanaka
,
T.
,
Fujimori
,
M.
, and
Saka
,
M.
,
2013
, “
Joule Heat Welding of Thin Platinum and Tungsten Wires and the Thermoelectric Effects around Bi-Metal Junctions
,”
ASME J. Micro- Nano-Manuf.
,
1
(
2
), p.
024501
.
43.
Singh
,
S.
, and
Jain
,
P. K.
,
2008
, “
Analytical Solution to Transient Heat Conduction in Polar Coordinates With Multiple Layers in Radial Direction
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
261
273
.
44.
Johansson
,
B. T.
, and
Lesnic
,
D.
,
2009
, “
A Method of Fundamental Solutions for Transient Heat Conduction in Layered Materials
,”
Eng. Anal. Boundary Elem.
,
33
(
12
), pp.
1362
1367
.
45.
Thirumaleshwar
,
M.
,
2009
,
Fundamentals of Heat and Mass Transfer
,
Pearson Education
, Dorling Kindersley (India) Pvt. Ltd., New Delhi, India.
You do not currently have access to this content.