Heat exchangers are important components in many engineering applications. This paper proposes a numerical two-phase heat exchanger model with simultaneous heat transfer and pressure drop calculations. The presented model provides a modeling framework compatible with numerous different correlations for both single- and two-phase flow of pure fluids and fluid mixtures. Furthermore, it considers nonconstant fluid properties as well as longitudinal heat conduction and parasitic heat loads, which is particularly relevant in mixed refrigerant cycles for cooling of low-temperature applications. The governing equations are derived and the solution strategy is presented, followed by the model validation against analytical solutions in the corresponding limits. Finally, an exemplary heat exchanger is analyzed using both homogeneous and separated flow models, and the results are compared with experimental data from literature.

References

1.
Pacio
,
J. C.
, and
Dorao
,
C. A.
,
2011
, “
A Review on Heat Exchanger Thermal Hydraulic Models for Cryogenic Applications
,”
Cryogenics
,
51
(
7
), pp.
366
379
.
2.
Kroeger
,
P. G.
,
1967
, “
Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Heat Conduction Effects
,”
Advances in Cryogenic Engineering
, Vol. 12,
K. D.
Timmerhaus
, ed.,
Springer
,
Boston, MA
, pp.
363
372
.
3.
Narayanan
,
S. P.
, and
Venkatarathnam
,
G.
,
1998
, “
Performance Degradation Due to Longitudinal Heat Conduction in Very High Ntu Counterflow Heat Exchangers
,”
Cryogenics
,
38
(
9
), pp.
927
930
.
4.
Chowdhury
,
K.
, and
Sarangi
,
S.
,
1984
, “
Performance of Cryogenic Heat Exchangers With Heat Leak From the Surroundings
,”
Advances in Cryogenic Engineering
, Vol. 29,
R. W.
Fast
, ed.,
Springer
,
Boston, MA
, pp.
273
280
.
5.
Nellis
,
G. F.
, and
Pfotenhauer
,
J. M.
,
2004
, “
Effectiveness-NTU Relationship for a Counterflow Heat Exchanger Subjected to an External Heat Transfer
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
1071
1073
.
6.
Nellis
,
G. F.
,
2003
, “
A Heat Exchanger Model That Includes Axial Conduction, Parasitic Heat Loads, and Property Variations
,”
Cryogenics
,
43
(
9
), pp.
523
538
.
7.
Corberán
,
J. M.
,
de Córdoba
,
P. F.
,
Gonzálvez
,
J.
, and
Alias
,
F.
,
2001
, “
Semiexplicit Method for Wall Temperature Linked Equations (Sewtle): A General Finite-Volume Technique for the Calculation of Complex Heat Exchangers
,”
Numer. Heat Transfer: Part B: Fundam.
,
40
(
1
), pp.
37
59
.
8.
Corberán
,
J. M.
,
de Córdoba
,
P. F.
,
Gonzalvez
,
S.
,
Ortuno
,
V.
,
Ferri
,
J.
,
Setaro
,
T.
, and
Boccardi
,
G.
,
2000
, “
Modelling of Compact Evaporators and Condensers
,”
WIT Trans. Eng. Sci.
,
27
, pp. 487–496.
9.
Damle
,
R. M.
,
Ardhapurkar
,
P. M.
, and
Atrey
,
M. D.
,
2015
, “
Numerical Analysis of the Two-Phase Heat Transfer in the Heat Exchanger of a Mixed Refrigerant Joule–Thomson Cryocooler
,”
Cryogenics
,
72
(
1
), pp.
103
110
.
10.
Damle
,
R. M.
,
Ardhapurkar
,
P. M.
, and
Atrey
,
M. D.
,
2017
, “
Numerical Simulation of Tubes-in-Tube Heat Exchanger in a Mixed Refrigerant Joule–Thomson Cryocooler
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
171
(
1
), p.
012070
.
11.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2013
, “
In-Tube Condensation of Zeotropic Fluid Mixtures: A Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
534
561
.
12.
Colburn
,
A. P.
, and
Drew
,
T. B.
,
1937
,
The Condensation of Mixed Vapors
,
American Institute of Chemical Engineers
,
New York
.
13.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2016
, “
Condensation of Ammonia and High-Temperature-Glide Zeotropic Ammoniawater Mixtures in Minichannels—Part II: Heat Transfer Models
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1357
1373
.
14.
Granryd
,
E.
,
1991
, “
Heat Transfer in Flow Evaporation of Nonazeotropic Refrigerant Mixtures a Theoretical Approach
,”
18th International Congress of Refrigeration
, Montreal, QC, Canada, Aug. 10–17, pp.
1330
1334
.
15.
Barraza
,
R.
,
Nellis
,
G.
,
Klein
,
S.
, and
Reindl
,
D.
,
2015
, “
Description and Validation of the Little Correlation for Boiling Zeotropic Mixtures in Horizontal Tubes From Cryogenic to Room Temperature
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
101
, p.
012132
.
16.
Silver
,
L.
,
1947
, “
Gas Cooling With Aqueous Condensation
,”
Trans. Inst. Chem. Eng.
,
25
(
3
), pp. 30–42.
17.
Bell
,
K. J.
, and
Ghaly
,
M. A.
,
1973
, “
Approximate Generalized Design Method for Multicomponent/Partial Condensers
,”
AIChE Symp. Ser.
,
69
(
131
), pp.
72
79
.
18.
Del Col
,
D.
,
Cavallini
,
A.
, and
Thome
,
J. R.
,
2005
, “
Condensation of Zeotropic Mixtures in Horizontal Tubes: New Simplified Heat Transfer Model Based on Flow Regimes
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
221
230
.
19.
Ardhapurkar
,
P. M.
,
Sridharan
,
A.
, and
Atrey
,
M. D.
,
2014
, “
Flow Boiling Heat Transfer Coefficients at Cryogenic Temperatures for Multi-Component Refrigerant Mixtures of Nitrogen–Hydrocarbons
,”
Cryogenics
,
59
, pp.
84
92
.
20.
Ardhapurkar
,
P. M.
,
Sridharan
,
A.
, and
Atrey
,
M. D.
,
2014
, “
Performance Evaluation of Heat Exchanger for Mixed Refrigerant J–T Cryocooler
,”
Cryogenics
,
63
, pp.
49
56
.
21.
Barraza
,
R.
,
Nellis
,
G.
,
Klein
,
S.
, and
Reindl
,
D.
,
2016
, “
Measured and Predicted Heat Transfer Coefficients for Boiling Zeotropic Mixed Refrigerants in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
97
, pp.
683
695
.
22.
Bogacki
,
P.
, and
Shampine
,
L.
,
1996
,”
An Efficient Runge-Kutta (4,5) Pair
,”
Comput. Math. Appl.
,
32
(
6
), pp.
15
28
.
23.
Shampine
,
L. F.
,
1994
,
Numerical Solution of Ordinary Differential Equations
, Vol.
4
,
CRC Press
,
Boca Raton, FL
.
24.
Gustafsson
,
K.
,
1991
, “
Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta Methods
,”
ACM Trans. Math. Software
,
17
(
4)
, pp.
533
554
.
25.
Wolfram Research
,
2016
, “Mathematica 11.0.1.0,” Woflram Research Inc., Campaign, IL.
26.
Ardhapurkar
,
P. M.
,
Sridharan
,
A.
, and
Atrey
,
M. D.
,
2014
, “
Experimental Investigation on Temperature Profile and Pressure Drop in Two-Phase Heat Exchanger for Mixed Refrigerant Joule–Thomson Cryocooler
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
94
103
.
27.
Ardhapurkar
,
P. M.
, and
Atrey
,
M. D.
,
2015
, “
Prediction of Two-Phase Pressure Drop in Heat Exchanger for Mixed Refrigerant Joule-Thomson Cryocooler
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
101
, p.
012111
.
28.
Whalley
,
P. B.
,
1987
,
Boiling, Condensation, and Gas-Liquid Flow
(Oxford Engineering Science Series), Vol. 21,
Clarendon Press/Oxford University Press
,
Oxford, UK/New York
.
29.
Chisholm
,
D.
,
1972
, “Equation for Velocity Ratio in Two-Phase Flow,” National Engineering Laboratory, East Kilbride Glasgow, UK, NEL Report No. 535.
30.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “REFPROP: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties,” National Institute of Standards and Technology, Gaithersburg, MD.
31.
Kunz
,
O.
, and
Wagner
,
W.
,
2012
, “
The Gerg-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures an Expansion of Gerg-2004
,”
J. Chem. Eng. Data
,
57
(
11
), pp.
3032
3091
.
32.
Aspen Technology
,
2014
, “Aspen plus v8.6,” Aspen Technology Inc., Burlington, MA.
33.
Eckels Engineering
,
2009
, “Cryocomp,” Eckels Engineering Inc., Florence, SC.
34.
VDI
,
2010
,
VDI Heat Atlas
, 2nd ed.,
Springer
,
Berlin
.
35.
Cavallini
,
A.
, and
Zecchin
,
R.
,
1974
, “
A Dimensionless Correlation for Heat Transfer in Forced Convection Condensation
,”
Fifth International Heat Transfer Conference
, Tokyo, Japan, Sept. 3–7, pp.
309
313
.
36.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11
), pp.
3246
3261
.
37.
Macdonald
,
M.
, and
Garimella
,
S.
,
2016
, “
Modeling of In-Tube Condensation of Zeotropic Mixtures
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091502
.
38.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, Vol.
4
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.