A mathematical model describing the homogeneous–heterogeneous reactions in the vicinity of the forward stagnation point of a cylinder immerged in a nanofluid is established. We assume that the homogeneous reaction is given by isothermal cubic autocatalator kinetics, while the heterogeneous reaction is chosen as first-order kinetics. The existence of multiple solutions through hysteresis bifurcations is discussed in detail for the various diffusion coefficients of reactant and autocatalyst.

References

1.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1994
, “
Free-Convection Stagnation-Point Boundary Layers Driven by Catalytic Surface Reactions—I: The Steady States
,”
J. Eng. Math.
,
28
(
2
), pp.
145
171
.
2.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous–Heterogeneous Reactions in Boundary-Layer Flow—I: Equal Diffusivities
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
311
333
.
3.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous–Heterogeneous Reactions in Boundary-Layer Flow—II: Different Diffusivities for Reactant and Autocatalyst
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
335
359
.
4.
Song
,
X.
,
Williams
,
W. R.
,
Schmidt
,
L. D.
, and
Aris
,
R.
,
1991
, “
Bifurcation Behavior in Homogeneous–Heterogeneous Combustion—II: Computations for Stagnation-Point Flow
,”
Combust. Flame
,
84
(
3–4
), pp.
292
311
.
5.
Song
,
X.
,
Schmidt
,
L. D.
, and
Aris
,
R.
,
1991
, “
Steady States and Oscillations in Homogeneous–Heterogeneous Reaction Systems
,”
Chem. Eng. Sci.
,
46
(
5
), pp.
1203
1215
.
6.
Ikeda
,
H.
,
Libby
,
P. A.
,
Williams
,
F. A.
, and
Sato
,
J. I.
,
1993
, “
Catalytic Combustion of Hydrogen-Air Mixtures in Stagnation Flows
,”
Combust. Flame
,
93
(
1
), pp.
138
148
.
7.
Williams
,
W. R.
,
Stenzel
,
M. T.
,
Song
,
X.
, and
Schmidt
,
L. D.
,
1991
, “
Bifurcation Behavior in Homogeneous–Heterogeneous Combustion—I: Experimental Results Over Platinum
,”
Combust. Flame
,
84
(
3–4
), pp.
277
291
.
8.
Williams
,
W. R.
,
Zhao
,
J.
, and
Schmidt
,
L. D.
,
1991
, “
Ignition and Extinction of Surface and Homogeneous Oxidation of NH3 and CH4
,”
AIChE J.
,
37
(
5
), pp.
641
649
.
9.
Ogren
,
P. J.
,
1975
, “
Analytical Results for First-Order Kinetics in Flow Tube Reactors With Wall Reactions
,”
J. Phys. Chem.
,
79
(
17
), pp.
1749
1752
.
10.
Dang
,
V. D.
, and
Steinberg
,
M.
,
1980
, “
Convective Diffusion With Homogeneous and Heterogeneous Reactions in a Tube
,”
J. Phys. Chem.
,
84
(
2
), pp.
214
219
.
11.
Nigam
,
K. M.
,
Srivastava
,
V. K.
, and
Nigam
,
K. D. P.
,
1982
, “
Homogeneous–Heterogeneous Reactions in a Tubular Reactor: An Analytical Solution
,”
J. Phys. Chem.
,
25
(
2
), pp.
147
150
.
12.
Ching-Yuan
,
C.
,
Yueh-Jiun
,
Y.
, and
Ching-Feng
,
L.
,
1985
, “
Mixed Convection and Diffusion of Reactants, Products, and Heat With Arbitrary-Order Heterogeneous and Homogeneous Reactions in a Rectangular Duct
,”
Int. J. Heat Transfer
,
28
(
10
), pp.
1813
1821
.
13.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exposition FED 231/MD66
, ASME, San Francisco, CA,
1995
, pp.
99
106
.
14.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Transfer
,
43
(
19
), pp.
3701
3707
.
15.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
16.
Kameswaran
,
P. K.
,
Shaw
,
S.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Homogeneous–Heterogeneous Reactions in a Nanofluid Flow Due to a Porous Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
465
472
.
17.
Magyari
,
E.
,
2011
, “
Comment on the Homogeneous Nanofluid Models Applied to Convective Heat Transfer Problems
,”
Acta Mech.
,
222
(
3–4
), pp.
381
385
.
18.
Merkin
,
J. H.
,
1996
, “
A Model for Isothermal Homogeneous–Heterogeneous Reactions in Boundary-Layer Flow
,”
Math. Comput. Model.
,
24
(
8
), pp.
125
136
.
19.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
On the Stagnation-Point Flow Towards a Stretching Sheet With Homogeneous–Heterogeneous Reactions Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4296
4302
.
20.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
,
Asghar
,
S.
, and
Obaidat
,
S.
,
2011
, “
Stagnation-Point Flow of a Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5588
5594
.
You do not currently have access to this content.