Turbine rotor tips and casings are vulnerable to mechanical failures due to the extreme thermal loads they undergo during engine service. In addition to the heat flux variations during the engine transient operation, periodic unsteadiness occurs at every rotor passage, with amplitude dependent on the tip gap. The development of appropriate predictive tools and cooling schemes requires the precise understanding of the heat transfer mechanisms. The present paper analyses the nature of the overtip flow in transonic turbine rotors running at tight clearances and explores a methodology to determine the relevant flow parameters that model the heat transfer. Steady-state three-dimensional Reynolds-averaged Navier–Stokes (RANS) calculations were performed to simulate engine-like conditions considering two rotor tip gaps, 0.1% and 1%, of the blade span. At tight tip clearance, the adiabatic wall temperature is no longer independent of the solid thermal boundary conditions. The adiabatic wall temperature predicted with the linear Newton's cooling law was observed to rise to unphysical levels in certain regions within the rotor tip gap, resulting in unreliable convective heat transfer coefficients (HTCs). This paper investigates different approaches to estimate the relevant flow parameters that drive the heat transfer. A novel four-coefficient nonlinear cooling law is proposed to model the effects of temperature-dependent gas properties and of the heat transfer history. The four-parameter correlation provided reliable estimates of the convective heat transfer descriptors for the 1% tip clearance case, but failed to model the tip heat transfer of the 0.1% tip gap rotor. The present study allows experimentalists to retrieve information on the gap flow temperature and convective HTC based on the use of wall heat flux measurements. The use of nonlinear cooling laws is sought to improve the evaluation of the rotor heat transfer data while enhancing the understanding of tight-clearance overtip flows.

References

1.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.
2.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,”
Turbine Blade Tip Design and Tip Clearance Treatment
(von Karman Institute for Fluid Dynamics Lecture Series),
T.
Arts
, ed.,
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
3.
Li
,
X. C.
,
Zhou
,
J.
, and
Aung
,
K.
,
2009
, “
On Selection of Reference Temperature of Heat Transfer Coefficient for Complicated Flows
,”
Heat Mass Transfer
,
45
(
5
), pp.
633
643
.
4.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
,
2009
, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine Including Endwalls
,”
ASME J. Turbomach.
,
131
(
2
), p.
021001
.
5.
Anderson
,
A.
, and
Moffat
,
R. J.
,
1992
, “
Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function: Part II—Modeling Flatpack Data as a Function of Channel Turbulence
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
22
28
.
6.
Eckert
,
E.
,
1955
, “
Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow
,”
J. Aeronaut. Sci.
,
22
, pp.
585
587
.
7.
Jones
,
T. V.
,
1991
, Turbomachinery: Latest Developments in a Changing Scene, IMechE, London, Mar. 19–20, pp. 201–206.
8.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
, 8th ed.,
Springer
,
Berlin
, pp.
645
646
.
9.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.-P.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
10.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.
11.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2013
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME J. Turbomach.
,
135
(
3
), p.
031027
.
12.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (I): Time-Mean Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
933
944
.
13.
Polanka
,
M. D.
,
Anthony
,
R. J.
,
Bogard
,
D. G.
, and
Reeder
,
M. F.
,
2008
, “
Determination of Cooling Parameters for a High Speed, True Scale, Metallic Turbine Vane Ring
,”
ASME
Paper No. GT2008-50281.
14.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
.
15.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
16.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
17.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
(Mechanical Engineering Series),
McGraw-Hill
,
New York
.
18.
Fitt
,
A. D.
,
Forth
,
C. J. P.
,
Robertson
,
B. A.
, and
Jones
,
T. V.
,
1986
, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
J. Heat Mass Transfer
,
29
(
1
), pp.
159
164
.
19.
Greiner
,
N. J.
,
Polanka
,
M. D.
,
Robertson
,
J. R.
, and
Rutledge
,
J. L.
,
2013
, “
Effect of Variable Properties Within a Boundary Layer With Large Freestream to Wall Temperature Differences
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052604
.
20.
Maffulli
,
R.
, and
He
,
L.
,
2013
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.
21.
Arvizu
,
D.
, and
Moffat
,
R. J.
,
1982
, “
The Use of Superposition in Calculating Cooling Requirements
,”
IEEE Electronics Cooling Conference
, San Diego, CA, pp.
133
144
.
22.
Hacker
,
J. M.
, and
Eaton
,
J. K.
,
1997
, “
Measurements of Heat Transfer in a Separated and Re-Attaching Flow With Spatially Varying Thermal Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
131
141
.
23.
Gomes
,
R. A.
, and
Niehuis
,
R.
,
2013
, “
The Concept of Adiabatic Heat Transfer Coefficient and Its Application to Turbomachinery
,”
ASME
Paper No. GT2013-94715.
24.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aero-Thermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
.
25.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
,
129
(
1
), pp.
84
91
.
26.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes
,”
AIAA
Paper No. 81-1259.
27.
White
,
F. M.
,
1998
,
Fluid Mechanics
, 4th ed.,
McGraw-Hill Higher Education
, New York.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Didier
,
F.
,
Dénos
,
R.
, and
Arts
,
T.
,
2002
, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
124
(
4
), pp.
614
622
.
30.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
31.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
32.
Yasa
,
T.
,
Paniagua
,
G.
, and
Denos
,
R.
,
2007
, “
Application of Hot-Wire Anemometry in a Blow-Down Turbine Facility
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
420
427
.
33.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
34.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
343
351
.
35.
Seinturier
,
E.
,
2012
, “
Introduction to Aircraft Engine Structural Design
,”
Structural Design of Aircraft Engines
(von Karman Institute for Fluid Dynamics Lecture Series LS 2012-13),
G.
Paniagua
, ed.,
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
36.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
You do not currently have access to this content.