This study presents an enhancement in the heat transfer performance of a glass thermosyphon using graphene–acetone nanofluid with 0.05%, 0.07%, and 0.09% volume concentrations. The heat load is varied between 10 and 50 W in five steps. The effect of heat load, volume concentration, and vapor temperature on thermal resistance, evaporator and condenser heat transfer coefficients, are experimentally investigated. A substantial reduction in thermal resistance of 70.3% is observed for the maximum concentration of 0.09% by volume of graphene–acetone nanofluid. Further, an enhancement in the evaporator heat transfer coefficient of 61.25% is observed for the same concentration. Also from the visualization study the different flow patterns in the evaporator, adiabatic, and condenser regions are obtained for acetone at different heat inputs.

References

1.
Ivanova
,
M.
,
Avenas
,
Y.
,
Schaeffer
,
C.
,
Dezord
,
J. B.
, and
Harder
,
J. S.
,
2006
, “
Heat Pipe Integrated in Direct Bonded Copper (DBC) Technology for Cooling of Power Electronics Packaging
,”
IEEE Trans. Power Electron.
,
21
(
6
), pp.
1541
1547
.
2.
Leong
,
K. Y.
,
Saidur
,
R.
,
Mahlia
,
T. M. I.
, and
Yau
,
Y. H.
,
2012
, “
Performance Investigation of Nanofluids as Working Fluid in a Thermosyphon Air Preheater
,”
Int. Commun. Heat Mass Transfer
,
39
(
4
), pp.
523
529
.
3.
Shafai
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
An Investigation of Thermal Performance of Cylindrical Heat Pipe Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
376
383
.
4.
Buschmann
,
M. H.
, and
Franzke
,
U.
,
2014
, “
Improvement of Thermosyphon Performance by Employing Nanofluid
,”
Int. J. Refrig.
,
40
, pp.
416
428
.
5.
Pang
,
C.
,
Jung
,
J. Y.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2012
, “
Thermal Conductivity Measurement of Methanol-Based Nanofluids With Al2O3 and SiO2 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
55
(21–22), pp.
5597
5602
.
6.
Longo
,
G. A.
, and
Zilio
,
C.
,
2011
, “
Experimental Measurement of Thermophysical Properties of Oxide–Water Nano-Fluids Down to Ice-Point
,”
Exp. Therm. Fluid Sci.
,
35
(7), pp.
1313
1324
.
7.
Baby
,
T. T.
, and
Ramaprabhu
,
S.
,
2010
, “
Investigation of Thermal and Electrical Conductivity of Graphene Based Nanofluids
,”
J. Appl. Phys.
,
108
(12), p.
124308
.
8.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.
9.
Shabgard
,
H.
,
Xiao
,
B.
,
Faghri
,
A.
,
Gupta
,
R.
, and
Weissman
,
W.
,
2014
, “
Thermal Characteristics of a Closed Thermosyphon Under Various Filling Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
91
102
.
10.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.
11.
Huminic
,
G.
,
Huminic
,
A.
,
Morjan
,
I.
, and
Dumitrache
,
F.
,
2011
, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
656
661
12.
Kang
,
S. W.
,
Wei
,
W. C.
,
Tsai
,
S. H.
, and
Yang
,
S. Y.
,
2006
, “
Experimental Investigation of Silver Nano-Fluid on Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2377
2382
13.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2013
, “
Heat Transfer Performance of Screen Mesh Wick Heat Pipes Using Silver–Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
60
, pp.
201
209
14.
Karthikeyan
,
M.
,
Vaidyanathan
,
S.
, and
Sivaraman
,
B.
,
2010
, “
Thermal Performance of a Two Phase Closed Thermosyphon Using Aqueous Solution
,”
Int. J. Eng. Sci. Technol.
,
2
(
5
), pp.
913
918
.
15.
Mozumder
,
A. K.
,
Akon
,
A. F.
,
Chowdhury
,
M. S. H.
, and
Banik
,
S. C.
,
2010
, “
Performance of Heat Pipe for Different Working Fluids and Filling Ratios
,”
J. Mech. Eng.
,
41
(
2
), pp.
96
102
.
16.
Naphon
,
T.
, and
Assadamongkol
,
P.
,
2008
, “
Heat Pipe Efficiency Enhancement With Refrigerant-Nanoparticles Mixtures
,”
J. Energy Convers. Manage.
,
50
(
3
), pp.
772
776
.
17.
Khandekar
,
S.
,
Charoensawan
,
P.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(16), pp.
2021
2033
.
18.
Pak
,
B. C.
, and
Cho
,
I. Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Sub-Micron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
19.
Godson
,
L.
,
Raja
,
B.
,
lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer
,
23
(
4
), pp.
317
332
.
20.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2007
, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
,
33
(
7
), pp.
691
706
.
21.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
,
Clarendon Press
,
Oxford, UK
.
22.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
G.
,
2006
, “
Investigation of CuO/Water Nanofluid Laminar Convective Heat Transfer Through a Circular Tube
,”
J. Enhanced Heat Transfer
,
13
(
4
), pp.
279
289
.
You do not currently have access to this content.