Heat transfer studies of a hot AISI 304 stainless steel plate by water jet impingement with different concentrations of three different types of surfactants have been investigated. The study involves a square plate of 100 mm × 100 mm surface area and 6 mm thickness with three subsurface thermocouples positioned at various locations inside the plate. The influence of jet height has been studied by varying the distance between the nozzle and plate from 200 mm to 600 mm. The results show that the heat transfer rate is found to increase with the jet height up to 400 mm and thereafter decreases due to capillary instability of liquid jet. Based on the maximum surface heat flux obtained for a particular nozzle height of 400 mm and an initial surface temperature of 900 °C, further experiments have been carried out with different types of surfactants. The types of surfactants used in the experimental study are anionic surfactant (sodium dodecyl sulphate, SDS), cationic surfactant (cetyltrimethylammonium bromide, CTAB) and nonionic surfactant (Polyoxyethylene 20 sorbitan monolaurate, Tween 20). During cooling, the transient temperature data measured by thermocouples have been analyzed by inverse heat conduction procedure to calculate surface heat flux and surface temperatures. The increase in surface heat flux has been observed with increasing concentration of surfactants and it has been found to be limited to a particular concentration of surfactant after which further increase in concentration leads to decrease in heat flux. Use of surfactant added water minimizes the surface tension and promotes better spreadability of coolant on the test specimen by reducing the solid–liquid contact angle. The maximum heat transfer rate has been found by using nonionic surfactant additive which can primarily be attributed to its lesser foam formability nature.

References

1.
Devadas
,
C.
, and
Samarasekera
,
I. V.
,
1986
, “
Heat Transfer During Hot Rolling of Steel Strip
,”
Ironmaking Steelmaking
,
13
(
6
), pp.
311
321
.
2.
Cox
,
S. D.
,
Hardy
,
S. J.
, and
Parker
,
D. J.
,
2001
, “
Influence of Runout Table Operation Setup on Hot Strip Quality, Subject to Initial Strip Condition: Heat Transfer Issues
,”
Ironmaking Steelmaking
,
28
(
5
), pp.
363
372
.10.1179/irs.2001.28.5.363
3.
Hatta
,
N.
,
Kokado
,
J.-I.
,
Takuda
,
H.
,
Harada
,
J.
, and
Hiraku
,
K.
,
1984
, “
Predictable Modelling for Cooling Process of a Hot Steel Plate by a Laminar Water Bar
,”
Arch. Eisenhuttenwesen
,
55
(
4
), pp.
143
148
.
4.
Mohapatra
,
S. S.
,
Chakraborty
,
S.
, and
Pal
,
S. K.
,
2012
, “
Experimental Studies on Different Cooling Processes to Achieve Ultra-Fast Cooling Rate for Hot Steel Plate
,”
Exp. Heat Transfer
,
25
(
2
), pp.
111
126
.10.1080/08916152.2011.582567
5.
Liu
,
Z. D.
, and
Samarasekera
,
I. V.
,
2004
, “
Application of Cooling Water in Controlled Runout Table Cooling on Hot Strip Mill
,”
J. Iron Steel Res. Int.
,
11
(
3
), pp.
15
23
.
6.
Zumbrunnen
,
D. A.
,
1990
, “
Method and Apparatus for Measuring Heat Transfer Distributions on Moving and Stationary Plates Cooled by a Planar Liquid Jet
,”
Exp. Therm. Fluid Sci.
,
3
(
2
), pp.
202
213
.10.1016/0894-1777(90)90088-O
7.
Zumbrunnen
,
D. A.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1989
, “
Effect of Surface Motion on Forced Convection Film Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
760
766
.10.1115/1.3250748
8.
Webb
,
B. W.
, and
Ma
,
C. F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Advances in Heat Transfer
,
P. H.
James
and
F. I.
Thomas
, eds.,
Elsevier
,
New York
, pp.
105
217
.
9.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1994
, “
Correlating Equations for Impingement Cooling of Small Heat-Sources With Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
482
486
.10.1115/1.2911423
10.
Pan
,
Y.
, and
Webb
,
B. W.
,
1995
, “
Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
878
883
.10.1115/1.2836305
11.
Karwa
,
N.
,
Gambaryan-Roisman
,
T.
,
Stephan
,
P.
, and
Tropea
,
C.
,
2011
, “
A Hydrodynamic Model for Subcooled Liquid Jet Impingement at the Leidenfrost Condition
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
993
1000
.10.1016/j.ijthermalsci.2011.01.021
12.
Islam
,
M. A.
,
Monde
,
M.
,
Woodfield
,
P. L.
, and
Mitsutake
,
Y.
,
2008
, “
Jet Impingement Quenching Phenomena for Hot Surfaces Well Above the Limiting Temperature for Solid-Liquid Contact
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1226
1237
.10.1016/j.ijheatmasstransfer.2007.01.059
13.
Worthington
,
A. M.
,
1876
, “
On the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate
,”
Proc. R. Soc. London
,
25
, pp.
261
272
.10.1098/rspl.1876.0048
14.
Bhunia
,
S. K.
, and
Lienhard
,
V. J. H.
,
1994
, “
Splattering During Turbulent Liquid Jet Impingement on Solid Targets
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
338
344
.10.1115/1.2910277
15.
Lienhard
,
V. J. H.
,
Liu
,
X.
, and
Gabour
,
L. A.
,
1992
, “
Splattering and Heat Transfer During Impingement of a Turbulent Liquid Jet
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
362
372
.10.1115/1.2911284
16.
Tinker
,
S. C.
,
di Marzo
,
M.
,
Tartarini
,
P.
,
Chandra
,
S.
, and
Quiao
,
Y. M.
,
1995
, “
Dropwise Evaporative Cooling: Effect of Dissolved Gases and Surfactants
,”
Proceedings of the International Conference on Fire Research and Enineering
,
D. P.
Lund
and
E. A.
Angell
, eds., SEPE, Orlando, FL, pp.
91
96
.
17.
Chandra
,
S.
,
Di Marzo
,
M.
,
Qiao
,
Y. M.
, and
Tartarini
,
P.
,
1996
, “
Effect of Liquid-Solid Contact Angle on Droplet Evaporation
,”
Fire Safety J.
,
27
(
2
), pp.
141
158
.10.1016/S0379-7112(96)00040-9
18.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1997
, “
Experiments on Adding a Surfactant to Water Drops Boiling on a Hot Surface
,”
Proc. R. Soc. London, Ser. A
,
453
(
1959
), pp.
673
689
.10.1098/rspa.1997.0038
19.
Clay
,
M. A.
, and
Miksis
,
M. J.
,
2004
, “
Effects of Surfactant on Droplet Spreading
,”
Phys. Fluids
,
16
(
8
), pp.
3070
3078
.10.1063/1.1764827
20.
Madasu
,
S.
,
2009
, “
Effect of Soluble Surfactants on Dynamic Wetting of Flexible Substrates: A Finite Element Study
,”
Phys. Fluids
,
21
(
12
), p. 122103.10.1063/1.3274019
21.
Koopal
,
L. K.
,
2012
, “
Wetting of Solid Surfaces: Fundamentals and Charge Effects
,”
Adv. Colloid Interface Sci.
,
179–182
, pp.
29
42
.10.1016/j.cis.2012.06.009
22.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
1999
, “
A Review of Enhanced Heat Transfer in Nucleate Pool Boiling of Aqueous Surfactant and Polymeric Solutions
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
135
150
.
23.
Wasekar
,
V. M.
,
2009
, “
Heat Transfer in Nucleate Pool Boiling of Aqueous SDS and Triton X-100 Solutions
,”
Heat Mass Transfer
,
45
(
11
), pp.
1409
1414
.10.1007/s00231-009-0517-6
24.
Wen
,
D. S.
, and
Wang
,
B. X.
,
2002
, “
Effects of Surface Wettability on Nucleate Pool Boiling Heat Transfer for Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1739
1747
.10.1016/S0017-9310(01)00251-4
25.
Kumar
,
M. K.
, and
Ghosh
,
P.
,
2006
, “
Coalescence of Air Bubbles in Aqueous Solutions of Ionic Surfactants in Presence of Inorganic Salt
,”
Chem. Eng. Res. Des.
,
84
(
8A
), pp.
703
710
.10.1205/cherd05058
26.
Suryanarayana
,
G.
, and
Ghosh
,
P.
,
2010
, “
Adsorption and Coalescence in Mixed-Surfactant Systems: Air-Water Interface
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1711
1724
.10.1021/ie9012216
27.
Schramm
,
L. L.
,
2000
,
Surfactants: Fundamentals and Applications in the Petroleum Industry
,
Cambridge University Press
,
Cambridge
, UK, p.
615
.
28.
Kim
,
H.-U.
, and
Lim
,
K.-H.
,
2004
, “
A Model on the Temperature Dependence of Critical Micelle Concentration
,”
Colloids Surf. A
,
235
(
1–3
), pp.
121
128
.10.1016/j.colsurfa.2003.12.019
29.
Becher
,
P.
,
1967
, “Micelle Formation in Aqueous and Nonaqueous Solutions,” Nonionic Surfactants, (Surfactant Science Series, Vol. 1) M. J. Schick, ed., Marcel Dekker, New York, pp. 478–515.
30.
Stead
,
J. A.
, and
Taylor
,
H.
,
1969
, “
Some Solution Properties of Certain Surface-Active N-Alkylpyridinium Halides. I. Effect of Temperature on the Critical Micelle Concentrations
,”
J. Colloid Interface Sci.
,
30
(
4
), pp.
482
488
.10.1016/0021-9797(69)90417-2
31.
Samanta
,
S.
, and
Ghosh
,
P.
,
2011
, “
Coalescence of Bubbles and Stability of Foams in Brij Surfactant Systems
,”
Ind. Eng. Chem. Res.
,
50
(
8
), pp.
4484
4493
.10.1021/ie102396v
32.
Frost
,
W.
, and
Kippenhan
,
C. J.
,
1967
, “
Bubble Growth and Heat-Transfer Mechanisms in the Forced Convection Boiling of Water Containing a Surface Active Agent
,”
Int. J. Heat Mass Transfer
,
10
(
7
), pp.
931
936
.10.1016/0017-9310(67)90070-1
33.
Elghanam
,
R. I.
,
Fawal
,
M. M. E.
,
Abdel Aziz
,
R.
,
Skr
,
M. H.
, and
Hamza Khalifa
,
A.
,
2011
, “
Experimental Study of Nucleate Boiling Heat Transfer Enhancement by Using Surfactant
,”
Ain Shams Eng. J.
,
2
(
3–4
), pp.
195
209
.10.1016/j.asej.2011.09.001
34.
Hetsroni
,
G.
,
Zakin
,
J. L.
,
Lin
,
Z.
,
Mosyak
,
A.
,
Pancallo
,
E. A.
, and
Rozenblit
,
R.
,
2000
, “
The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
485
497
.10.1016/S0017-9310(00)00099-5
35.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1998
, “
Spray Cooling Enhancement by Addition of a Surfactant
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
92
98
.10.1115/1.2830070
36.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Verma
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet
,”
ASME J. Heat Transfer
,
135
(
3
), p.
032101
.10.1115/1.4007878
37.
Tambe
,
D. E.
, and
Sharma
,
M. M.
,
1991
, “
Hydrodynamics of Thin Liquid Films Bounded by Viscoelastic Interfaces
,”
J. Colloid Interface Sci.
,
147
(
1
), pp.
137
151
.10.1016/0021-9797(91)90142-U
38.
Mingzheng
,
Z.
,
Guodong
,
X.
,
Jian
,
L.
,
Lei
,
C.
, and
Lijun
,
Z.
,
2012
, “
Analysis of Factors Influencing Thermal Conductivity and Viscosity in Different Kinds of Surfactant Solutions
,”
Exp. Therm. Fluid Sci.
,
36
(
0
), pp.
22
29
.10.1016/j.expthermflusci.2011.07.014
39.
Li
,
D.
, and
Wells
,
M. A.
,
2005
, “
Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
.10.1007/s11663-005-0064-6
40.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1997
,
Practical Inverse Analysis in Engineering
(With 3.5 Disk),
CRC Press, Inc.
,
Boca Raton, FL
.
41.
Hatta
,
N.
,
Kokado
,
J.-I.
, and
Hanasaki
,
K.
,
1983
, “
Numerical Analysis of Cooling Characteristics for Water Bar
,”
Trans. Iron Steel Inst. Jpn.
,
23
(
7
), pp.
555
564
.10.2355/isijinternational1966.23.555
42.
Karwa
,
N.
,
Schmidt
,
L.
, and
Stephan
,
P.
,
2012
, “
Hydrodynamics of Quenching With Impinging Free-Surface Jet
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3677
3685
.10.1016/j.ijheatmasstransfer.2012.02.035
43.
Agrawal
,
C.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chatterjee
,
B.
,
2012
, “
Rewetting and Maximum Surface Heat Flux During Quenching of Hot Surface by Round Water Jet Impingement
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4772
4782
.10.1016/j.ijheatmasstransfer.2012.04.045
44.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Sarkar
,
I.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-Atomized Spray With Different Surfactant Additives
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
79
89
.10.1016/j.expthermflusci.2013.05.007
45.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
46.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1994
, “
Optimal Regularization of the Inverse-Heat Conduction Problem Using the L-Curve
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
5
), pp.
447
452
.10.1108/EUM0000000004048
You do not currently have access to this content.