Magnetic interstitial hyperthermia is a hopeful treatment method for tumor. Before treatment, the tumor would be embedded with a number of ferromagnetic seeds, which can produce energy under an alternating magnetic field. The tumor cells would be necrosed once the temperature exceeding to a value. However, the normal tissue around the tumor is expected to be under safety. Hence, temperature simulation is necessary to avoid any mistake treatment planning, meanwhile, the calculation is required as quick as possible. We developed an efficient cellular automata (CA) numerical method to solve the bioheat transfer equation. The CA equation is derived from Lattice Boltzmann equation. As a discrete numerical method in space and time, CA can be used to deal with the complicated boundaries, such as the huge vessels incorporated in the tumor, which were not well treated in traditional methods. The model of ferromagnetic seed, which is critical to the numerical results, is treated with a simple numerical temperature model. In order to evaluate the proposed method, in vitro and in vivo experiments are carried out, respectively. After comparison between the numerical and the experimental results, the proposed method shows perfect calculation precision and high efficiency, which is significant for clinical treatment.

References

1.
Murray
,
T. G.
,
Steeves
,
R. A.
,
Gentry
,
L.
,
Bresnick
,
G.
,
Boldt
,
H. C.
,
Mieler
,
W. F.
, and
Tompkins
,
D.
,
1997
, “
Ferromagnetic Hyperthermia: Functional and Histopathologic Effects on Normal Rabbit Ocular Tissue
,”
Int. J. Hypertherm.
,
13
(
4
), pp.
423
436
.10.3109/02656739709046543
2.
Steeves
,
R. A.
,
Murray
,
T. G.
,
Moros
,
E. G.
,
Boldt
,
H. C.
,
Mieler
,
W. F.
, and
Paliwal
,
B. R.
,
1992
, “
Concurrent Ferromagnetic Hyperthermia and 125i Brachytherapy in a Rabbit Choroidal Melanoma Model
,”
Int. J. Hypertherm.
,
8
(
4
), pp.
443
449
.10.3109/02656739209037982
3.
Brezovich
, I
. A.
,
Lilly
,
M. B.
,
Meredith
,
R. F.
,
Weppelmann
,
B.
,
Henderson
,
R. A.
,
Brawner
,
W.
, and
Salter
,
M. M.
,
1990
, “
Hyperthermia of Pet Animal Tumours With Self-Regulating Ferromagnetic Thermoseeds
,”
Int. J. Hypertherm.
,
6
(
1
), pp.
117
130
.10.3109/02656739009140809
4.
Kotte
,
A.
,
Wieringen
,
N.
, and
Lagendijk
,
J.
,
1998
, “
Modelling Tissue Heating With Ferromagnetic Seeds
,”
Phys. Med. Biol.
,
43
(
1
), p.
105–120
.10.1088/0031-9155/43/1/007
5.
Kobayashi
,
T.
,
Kida
,
Y.
,
Tanaka
,
T.
,
Kageyama
,
N.
,
Kobayashi
,
H.
, and
Amemiya
,
Y.
,
1986
, “
Magnetic Induction Hyperthermia for Brain Tumor Using Ferromagnetic Implant With Low Curie Temperature
,”
J. Neuro-oncol.
,
4
(
2
), pp.
175
181
.10.1007/BF00165380
6.
Paulus
,
J.
,
Richardson
,
J.
,
Tucker
,
R.
, and
Park
,
J.
,
1996
, “
Evaluation of Inductively Heated Ferromagnetic Alloy Implants for Therapeutic Interstitial Hyperthermia
,”
IEEE Trans. Biomed. Eng.
,
43
(
4
), pp.
406
413
.10.1109/10.486260
7.
Brezovich
, I
.
,
Atkinson
,
W.
, and
Chakraborty
,
D.
,
1984
, “
Temperature Distributions in Tumor Models Heated by Self-Regulating Nickel–Copper Alloy Thermoseeds
,”
Med. Phys.
,
11
(
2
), pp.
145
152
.10.1118/1.595490
8.
Tompkins
,
D. T.
,
Partington
,
B. P.
,
Steeves
,
R. A.
,
Bartholow
,
S. D.
, and
Paliwal
,
B. R.
,
1992
, “
Effect of Implant Variables on Temperatures Achieved During Ferromagnetic Hyperthermia
,”
Int. J. Hypertherm.
,
8
(
2
), pp.
241
251
.10.3109/02656739209021779
9.
Hildebrandt
,
B.
,
Wust
,
P.
,
Ahlers
,
O.
,
Dieing
,
A.
,
Sreenivasa
,
G.
,
Kerner
,
T.
,
Felix
,
R.
, and
Riess
,
H.
,
2002
, “
The Cellular and Molecular Basis of Hyperthermia
,”
Crit. Rev. Oncol./Hematol.
,
43
(
1
), pp.
33
56
.10.1016/S1040-8428(01)00179-2
10.
Cherukuri
,
P.
,
Glazer
,
E. S.
, and
Curley
,
S. A.
,
2010
, “
Targeted Hyperthermia Using Metal Nanoparticles
,”
Adv. Drug Deliv. Rev.
,
62
(
3
), pp.
339
345
.10.1016/j.addr.2009.11.006
11.
Lang
,
J.
,
Erdmann
,
B.
, and
Seebass
,
M.
,
1999
, “
Impact of Nonlinear Heat Transfer on Temperature Control in Regional Hyperthermia
,”
IEEE Trans. Biomed. Eng.
,
46
(
9
), pp.
1129
1138
.10.1109/10.784145
12.
Pennes
,
H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.
13.
Haider
,
S.
,
Cetas
,
T.
, and
Roemer
,
R.
,
1993
, “
Temperature Distribution in Tissues From a Regular Array of Hot Source Implants: An analytical Approximation
,”
IEEE Trans. Biomed. Eng.
,
40
(
5
), pp.
408
417
.10.1109/10.243421
14.
Chen
,
Z.
,
Roemer
,
R.
, and
Cetas
,
T.
,
1992
, “
Three-Dimensional Simulations of Ferromagnetic Implant Hyperthermia
,”
Med. Phys.
,
19
(
4
), pp.
989
997
.10.1118/1.596787
15.
Haider
,
S.
,
Cetas
,
T.
,
Wait
,
J.
, and
Chen
,
J.
,
1991
, “
Power Absorption in Ferromagnetic Implants From Radiofrequency Magnetic Fields and the Problem of Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
39
(
11
), pp.
1817
1827
.10.1109/22.97482
16.
Indik
,
J.
,
Indik
,
R.
, and
Cetas
,
T.
,
1994
, “
Fast and Efficient Computer Modeling of Ferromagnetic Seed Arrays of Arbitrary Orientation for Hyperthermia Treatment Planning
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
30
(
3
), pp.
653
662
.10.1016/0360-3016(92)90952-E
17.
Van Wieringen
,
N.
,
Kotte
,
A.
,
Van Leeuwen
,
G.
,
Lagendijk
,
J.
,
Van Dijk
,
J.
, and
Nieuwenhuys
,
G.
,
1998
, “
Dose Uniformity of Ferromagnetic Seed Implants in Tissue With Discrete Vasculature: A Numerical Study on the Impact of Seed Characteristics and Implantation Techniques
,”
Phys. Med. Biol.
,
43
(
1
),
pp. 121–138
.10.1088/0031-9155/43/1/008
18.
Golneshan
,
A.
, and
Lahonian
,
M.
,
2011
, “
The Effect of Magnetic Nanoparticle Dispersion on Temperature Distribution in a Spherical Tissue in Magnetic Fluid Hyperthermia Using the Lattice Boltzmann Method
,”
Int. J. Hypertherm.
,
27
(
3
), pp.
266
274
.10.3109/02656736.2010.519370
19.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
20.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.10.1006/jcph.1998.6057
21.
Fan
,
Z.
,
Qiu
,
F.
,
Kaufman
,
A.
, and
Yoakum-Stover
,
S.
,
2004
, “
Gpu Cluster for High Performance Computing
,”
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, IEEE Computer Society
, pp.
47
58
.
22.
Wu
,
J.
,
Zhu
,
L.
, and
Tang
,
J.
,
2012
, “
Modeling and Simulation of Phantom Temperature Field in Magnetic Induction Hyperthermia
,”
Comput. Model. Eng. Sci.(CMES)
,
86
(
3
), pp.
225
240
.
23.
Nvidia Corporation,
2007
, “
Compute Unified Device Architecture Programming Guide
,” http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
24.
Latt
,
J.
,
Chopard
,
B.
,
Malaspinas
,
O.
,
Deville
,
M.
, and
Michler
,
A.
,
2008
, “
Straight Velocity Boundaries in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
77
(
5
), p.
056703
.10.1103/PhysRevE.77.056703
25.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method
,”
Phys. Fluids
,
14
(
6
),
p. 2007
.10.1063/1.1471914
26.
Stauffer
,
P.
,
Cetas
,
T.
,
Fletcher
,
A.
,
Deyoung
,
D.
,
Dewhirst
,
M.
,
Oleson
,
J.
, and
Roemer
,
R.
,
1984
, “
Observations on the Use of Ferromagnetic Implants for Inducing Hyperthermia
,”
IEEE Trans. Biomed. Eng.
,
30
(
1
), pp.
76
90
.10.1109/TBME.1984.325373
27.
Stauffer
,
P.
,
Cetas
,
T.
, and
Jones
,
R.
,
1984
, “
Magnetic Induction Heating of Ferromagnetic Implants for Inducing Localized Hyperthermia in Deep-Seated Tumors
,”
IEEE Trans. Biomed. Eng.
,
30
(
2
), pp.
235
251
.10.1109/TBME.1984.325334
28.
Valvano
,
J. W.
,
2011
, “
Tissue Thermal Properties and Perfusion
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch
and
M. J.
Gemert
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
455
485
.
29.
Bhattacharya
,
A.
, and
Mahajan
,
R.
,
2003
, “
Temperature Dependence of Thermal Conductivity of Biological Tissues
,”
Physiol. Meas.
,
24
, p.
769
.10.1088/0967-3334/24/3/312
30.
Liu
,
J.
,
Zhou
,
Y.
, and
Deng
,
Z.
,
2002
, “
Sinusoidal Heating Method to Noninvasively Measure Tissue Perfusion
,”
IEEE Trans. Biomed. Eng.
,
49
(
8
), pp.
867
877
.10.1109/TBME.2002.800769
31.
Ouyang
,
W.
,
Gao
,
F.
,
Wang
,
L.
,
Xie
,
X.
,
Lei
,
F.
,
Zhou
,
J.
,
Liao
,
Y.
,
Zhong
,
M.
, and
Tang
,
J.
,
2010
, “
Thermoseed Hyperthermia Treatment of Mammary Orthotopic Transplantation Tumors in Rats and Impact on Immune Function
,”
Oncol. Rep.
,
24
(
4
), pp.
973
979
.
32.
Xia
,
Q.-S.
,
Liu
,
X.
,
Xu
,
B.
,
Zhao
,
T.-D.
,
Li
,
H.-Y.
,
Chen
,
Z.-H.
,
Xiang
,
Q.
,
Geng
,
C.-Y.
,
Pan
,
L.
,
Hu
,
R.-L.
,
Qi
,
Y.-J.
,
Sun
,
G.-F.
, and
Tang
,
J.-T.
,
2011
, “
Feasibility Study of High-Temperature Thermoseed Inductive Hyperthermia in Melanoma Treatment
,”
Oncol. Rep.
,
25
(
4
), pp.
953
962
.
You do not currently have access to this content.