In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method.

References

1.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C.
,
2010
, “
Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102401
.10.1115/1.4001644
2.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C. H.
,
2010
, “
Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics
,”
ASME J. Heat Transfer
,
132
(
1
), p.
012401
.10.1115/1.3211853
3.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2006
, “
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,”
Adv. Heat Transfer
,
39
, pp.
169
255
.10.1016/S0065-2717(06)39002-8
4.
Turney
,
J. E.
,
Landry
,
E. S.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2009
, “
Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
, p.
064301
.10.1103/PhysRevB.79.064301
5.
Thomas
,
J. A.
,
Turney
,
J. E.
,
Iutzi
,
R. M.
,
Amon
,
C. H.
, and
McGaughey
,
A. J. H.
,
2010
, “
Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density
,”
Phys. Rev. B
,
81
(
8
), p.
081411
.10.1103/PhysRevB.81.081411
6.
Koker
,
N. de.
,
2009
, “
Thermal Conductivity of MgO Periclase From Equilibrium First Principles Molecular Dynamics
,”
Phys. Rev. Lett.
,
103
, p.
125902
.10.1103/PhysRevLett.103.125902
7.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.
8.
Qiu
,
B.
,
Bao
,
H.
,
Zhang
,
G.
,
Wu
,
Y.
, and
Ruan
,
X.
,
2011
, “
Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures
,”
Comput. Mater.Sci.
,
53
(
1
), pp.
278
285
.10.1016/j.commatsci.2011.08.016
9.
Sun
,
L.
,
2008
, Phonon Transport in Confined Structures and at Interfaces, Ph.D. thesis, Purdue University, West Lafayette, IN.
10.
Liu
,
K.
,
Chen
,
S.
,
Nie
,
X.
, and
Robbins
,
M. O.
,
2007
, “
A Continuum–Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows
,”
J. Comput. Phys.
,
227
(
1
), pp.
279
291
.10.1016/j.jcp.2007.07.014
11.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2005
, “
Hybrid Atomistic–Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
,
205
(
1
), pp.
373
390
.10.1016/j.jcp.2004.11.019
12.
Mohamed
,
K. M.
, and
Mohamad
,
A. A.
,
2010
, “
A Review of the Development of Hybrid Atomistic-Continuum Methods for Dense Fluids
,”
Microfluidics Nanofluidics
,
8
(
3
), pp.
283
302
.10.1007/s10404-009-0529-z
13.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2004
, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
946
–955.10.1115/1.1833367
14.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2006
, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
,
42
(
6
), pp.
478
491
.10.1007/s00231-005-0645-6
15.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2005
, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
713
723
.10.1115/1.1924571
16.
Ni
,
C.
,
2009
, “
Phonon Transport Models for Heat Conduction in Sub-Micron Geometries With Applications to Microelectronics
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
17.
Loy
,
J. M.
,
2010
, “
An Acceleration Technique for the Solution of the Phonon Boltzmann Transport Equation
,” M.S. thesis, Purdue University, West Lafayette, IN.
18.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
(
7
), pp.
7
16
.10.1115/1.2910673
19.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
749
–759.10.1115/1.1377018
20.
McGaughey
,
A. J.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
(
9
), p.
094303
.10.1103/PhysRevB.69.094303
21.
Chen
,
G.
,
1998
, “
Thermal-Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
22.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
(
4
), pp.
1046
1051
.10.1103/PhysRev.113.1046
23.
Holland
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
24.
Klemens
,
P. G.
,
1951
, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical)
,”
Proc. R. Soc. A
,
208
(
1092
), pp.
108
133
.10.1098/rspa.1951.0147
25.
Ward
,
A.
, and
Broido
,
D. A.
,
2010
, “
Intrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities of Si and Ge
,”
Phys. Rev. B
,
81
(
8
), p.
085205
.10.1103/PhysRevB.81.085205
26.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
, and
Mingo
,
N.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
, p.
231922
.10.1063/1.2822891
27.
Pascual-Gutiérrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R.
,
2009
, “
Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential
,”
J. Appl. Phys.
,
106
, p.
063532
.10.1063/1.3195080
28.
Pascual-Gutierrez
,
J. A.
,
2011
, “
On the Theory of Phonons: A Journey From Their Origins to the Intricate Mechanisms of Their Transport
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
29.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2011
, “
Spectral Phonon Conduction and Dominant Scattering Pathways in Graphene
,”
J. Appl. Phys.
,
110
(
9
), p.
094312
.10.1063/1.3656451
30.
Singh
,
D.
,
2011
, “
Frequency and Polarization Resolved Phonon Transport in Carbon and Silicon Nanostructures
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
31.
Pilch
,
M.
,
Trucano
,
T.
, and
Helton
,
J.
,
2011
, “
Ideas Underlying Quantification of Margins and Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
965
975
.10.1016/j.ress.2011.03.016
32.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.10.1115/1.1767847
33.
Wallstrom
,
T. C.
,
2011
, “
Quantification of Margins and Uncertainties: A Probabilistic Framework
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1053
1062
.10.1016/j.ress.2011.01.001
34.
Kennedy
,
M. C.
, and
Optagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. B
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
35.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
H.
,
2006
, “
Validation and Error Estimation of Computational Models
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1390
1397
.10.1016/j.ress.2005.11.035
36.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.10.1016/j.engfracmech.2011.02.017
37.
Urbina
,
A.
,
Mahadevan
,
S.
, and
Paez
,
T.
,
2011
, “
Quantification of Margins and Uncertainties of Complex Systems in the Presence of Aleatoric and Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1114
1125
.10.1016/j.ress.2010.08.010
38.
Zhang
,
R.
, and
Mahadevan
,
S.
,
2003
, “
Bayesian Methodology for Reliability Model Acceptance
,”
Reliab. Eng. Syst. Saf.
,
80
(
1
), pp.
95
103
.10.1016/S0951-8320(02)00269-7
39.
Chib
,
S.
, and
Greenberg
,
E.
,
1995
, “
Understanding the Metropolis-Hastings Algorithm
,”
Am. Stat.
,
49
(
4
), pp.
327
335
.10.1080/00031305.1995.10476177
40.
Salloum
,
M.
,
Sargsyan
,
K.
,
Jones
,
R.
,
Debusschere
,
B.
,
Najm
,
H. N.
, and
Adalsteinsson
,
H.
,
2011
, “
Uncertainty Quantification in Multiscale Atomistic-Continuum Models
,”
Uncertainty Quantification and Multiscale Materials Modeling Workshop
, Santa Fe, NM, June 13–15.
41.
Rizzi
,
F.
,
Jones
,
R. E.
,
Debusschere
,
B.
, and
Knio
,
O. M.
,
2013
, “
Uncertainty Quantification in MD Simulations of Concentration Driven Ionic Flow Through a Silica Nanopore: I. Sensitivity to Physical Parameters of the Pore
,”
J. Chem. Phys.
,
138
(
19
), p.
194104
.10.1063/1.4804666
42.
Rizzi
,
F.
,
Jones
,
R. E.
,
Debusschere
,
B.
, and
Knio
,
O. M.
,
2013
, “
Uncertainty Quantification in MD Simulations of Concentration Driven Ionic Flow Through a Silica Nanopore: II. Uncertain Potential Parameters
,”
J. Chem. Phys.
,
138
(
19
), p.
194105
.10.1063/1.4804669
43.
Fishman
,
G.
,
1996
,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer–Verlag
,
New York
.
44.
Giunta
,
A. A.
,
Eldred
,
M.
,
Swiler
,
L.
,
Trucano
,
T.
, and
Wotjkiewicz
,
S. J.
,
2004
, “
Perspectives on Optimization under Uncertainty: Algorithms and Applications
,”
Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, New York.
45.
Cressie
,
N.
,
1991
,
Statistics of Spatial Data
,
John Wiley and Sons
,
New York
.
46.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
, pp.
619
644
.10.1137/S1064827501387826
47.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2003
, “
A New Stochastic Approach to Transient Heat Conduction Modeling with Uncertainty
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4681
4693
.10.1016/S0017-9310(03)00299-0
48.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
, pp.
242
272
.
49.
Xiu
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
High Order Collocation Methods for Differential Equations with Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.10.1137/040615201
50.
Ghanem
,
R.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
51.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
,
2007
, “
Sparse Grid Collocation Schemes for Stochastic Natural Convection Problems
,”
J. Comput. Phys.
,
225
, pp.
652
685
.10.1016/j.jcp.2006.12.014
52.
Smolyak
,
S.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,” Soviet Mathematics, Doklady,
4
, pp.
240
243
.
53.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
41
, pp.
35
52
.10.1146/annurev.fluid.010908.165248
54.
Ma
,
X.
, and
Zabaras
,
N.
,
2008
, “
An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations
,”
J. Comput. Phys.
,
228
(
8
), pp.
3084
3113
.10.1016/j.jcp.2009.01.006
55.
Agarwal
,
N.
, and
Aluru
,
N. R.
,
2010
, “
A Data-Driven Stochastic Collocation Approach for Uncertainty Quantification in MEMS
,”
Int. J. Numer. Methods Eng.
,
83
(
5
), pp.
575
597
.10.1002/nme.2844
56.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
(
8
), pp.
5262
5271
.10.1103/PhysRevB.31.5262
57.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
58.
Wang
,
Y. G.
,
Qiu
,
B.
,
McGaughey
,
A.
,
Ruan
,
X. L.
, and
Xu
,
X. F.
,
2013
, “
Mode-Wise Thermal Conductivity of Bismuth Telluride
,”
J. Heat Transfer
,
135
(
9
), p.
091102
.10.1115/1.4024356
59.
Sun
,
L.
, and
Murthy
,
J. Y.
,
2006
, “
Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon
,”
Appl. Phys. Lett.
,
89
, p.
171919
.10.1063/1.2364062
60.
Valleau
,
J. P.
, and
Whittington
,
S. G.
,
1977
, “
A Guide to Monte Carlo for Statistical Mechanics
,”
Statistical Mechanics, Part A: Equilibrium Techniques
,
B. J.
Berne
, ed.,
Plenum
,
New York
.
61.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
62.
Purdue UQ Software
, Available at http://memshub.org/site/memosa_docs/puq/
You do not currently have access to this content.