Boundary-layer forced convective heat transfer at a moving flat surface parallel to a moving stream is presented for the case where the plate is subjected to a variable heat flux. In particular, we assume that the surface heat flux varies with spatial variable x according to a power-law rule. The similarity solutions for the problem are obtained by solving the reduced ordinary differential equations numerically, while exact solutions are provided for certain parametric values. It is noted that even in the case of prescribed surface heat flux, dual solutions exist when the surface and the fluid move in opposite directions.

References

1.
Siekman
,
J.
,
1962
, “
The Laminar Boundary Layer Along a Flat Plate
,”
Z. Flugwiss.
,
10
, pp.
278
281
.
2.
Klemp
,
J. B.
, and
Acrivos
,
A.
,
1976
, “
The Moving-Wall Boundary Layer With Reverse Flow
,”
J. Fluid Mech.
,
76
, pp.
363
381
.10.1017/S0022112076000670
3.
Abdulhafez
,
T. A.
,
1985
, “
Skin Friction and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream
,”
Int. J. Heat Mass Transfer
,
28
, pp.
1234
1237
.10.1016/0017-9310(85)90132-2
4.
Chappidi
,
P. R.
, and
Gunnerson
,
F. S.
,
1989
, “
Analysis of Heat and Momentum Transport Along a Moving Surface
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1383
1386
.10.1016/0017-9310(89)90039-2
5.
Hussaini
,
M. Y.
,
Lakin
,
W. D.
, and
Nachman
,
A.
,
1987
, “
On Similarity Solutions of a Boundary-Layer Problem With an Upstream Moving Wall
,”
SIAM J. Appl. Math.
,
47
, pp.
699
709
.10.1137/0147048
6.
Lin
,
H. T.
, and
Haung
,
S. F.
,
1994
, “
Flow and Heat Transfer of Plane Surface Moving in Parallel and Reversely to the Free Stream
,”
Int. J. Heat Mass Transfer
,
37
, pp.
333
336
.
7.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2005
, “
Universal Solutions for the Streamwise Variation of the Temperature of a Moving Sheet in the Presence of a Moving Fluid
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3047
3056
.10.1016/j.ijheatmasstransfer.2005.02.028
8.
Cortell
,
R.
,
2007
, “
Flow and Heat Transfer in a Moving Fluid Over a Moving Flat Surface
,”
Theor. Comput. Fluid Dyn.
,
21
, pp.
435
446
.10.1007/s00162-007-0056-z
9.
Afzal
,
N.
,
Badaruddin
,
A.
, and
Elgarvi
,
A. A.
,
1993
, “
Momentum and Heat Transport on a Continuous Flat Surface Moving in a Parallel Stream
,”
Int. J. Heat Mass Transfer
,
36
(
13
), pp.
3399
3403
.10.1016/0017-9310(93)90022-X
10.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
, I
.
,
2009
, “
The Effects of Transpiration on the Flow and Heat Transfer Over a Moving Permeable Surface in a Parallel Stream
,”
Chem. Eng. J.
,
148
, pp.
63
67
.10.1016/j.cej.2008.07.040
11.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
, I
.
,
2009
, “
Flow and Heat Transfer Characteristics on a Moving Flat Plate in a Parallel Stream With Constant Surface Heat Flux
,”
Heat Mass Transfer
,
45
, pp.
563
567
.10.1007/s00231-008-0462-9
12.
Mukhopadhyay
,
S.
,
Vajravelu
,
K.
, and
Van Gorder
,
R. A.
,
2012
, “
Flow and Heat Transfer in a Moving Fluid Over a Moving Non-Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6632
6637
.10.1016/j.ijheatmasstransfer.2012.06.072
13.
Salleh
,
M. Z.
, and
Nazar
,
R.
,
2008
, “
Numerical Investigation of Free Convection Boundary Layer Flow on a Vertical Surface With Prescribed Wall Temperature and Heat Flux
,”
J. Qual. Meas. Anal.
,
4
(
2
), pp.
57
69
.
14.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1958
, “
Similar Solutions for Free Convection From a Non-Isothermal Vertical Plate
,”
ASME Trans. J. Heat Transfer
,
80
, pp.
379
386
.
15.
Avissar
,
R.
, and
Schmidt
,
T.
,
1998
, “
An Evaluation of the Scale at Which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer Using Large-Eddy Simulations
,”
J. Atmos. Sci.
,
55
, pp.
2666
2689
.10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2
16.
Lin
,
C. R.
, and
Chen
,
C. K.
,
1998
, “
Exact Solution of Heat Transfer From a Stretching Surface With Variable Heat Flux
,”
Heat Mass Transfer
,
33
, pp.
477
480
.10.1007/s002310050218
17.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2010
, “
A Note on Flow Geometries and the Similarity Solutions of the Boundary Layer Equations for a Nonlinearly Stretching Sheet
,”
Arch. Appl. Mech.
,
80
, pp.
1329
1332
.10.1007/s00419-009-0370-6
18.
Mukhopadhyay
,
S.
,
2011
, “
Analysis of Heat Transfer in a Moving Fluid Over a Moving Non-Isothermal Flat Surface
,”
Chin. Phys. Lett.
,
28
(
12
), p.
124706
.10.1088/0256-307X/28/12/124706
19.
Mukhopadhyay
,
S.
,
Bhattacharyya
,
K.
, and
Layek
,
G. C.
,
2011
, “
Steady Boundary Layer Flow and Heat Transfer Over a Porous Moving Plate in Presence of Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2751
2757
.10.1016/j.ijheatmasstransfer.2011.03.017
20.
Turkyilmazoglu
,
M.
,
2011
, “
Effects of Partial Slip on the Analytic Heat and Mass Transfer for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow
,”
ASME J. Heat Transfer
,
133
, p.
122602
.10.1115/1.4004558
21.
Turkyilmazoglu
,
M.
,
2012
, “
Multiple Analytic Solutions of Heat and Mass Transfer of Magnetohydrodynamic Slip Flow for Two Types of Viscoelastic Fluids Over a Stretching Surface
,”
ASME J. Heat Transfer
,
134
, p.
071701
.10.1115/1.4006165
22.
Abramowitz
,
M.
, and
Stegun
,
I.
, eds.,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
23.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
,
2006
, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
,
441
(
1–12
), pp.
730
737
.10.1016/j.ijengsci.2006.04.005
24.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
,
Vajravelu
,
K.
, and
Van Gorder
,
R. A.
,
2011
, “
Stability Analysis of Fluid Flow Over a Nonlinearly Stretching Sheet
,”
Arch. Appl. Mech.
,
81
, pp.
1087
1091
.10.1007/s00419-010-0423-x
25.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
,
Vajravelu
,
K.
, and
Van Gorder
,
R. A.
,
2012
, “
Stability Analysis of the Dual Solutions for Stagnation-Point Flow Over a Non-Linearly Stretching Surface
,”
Meccanica
,
47
, pp.
1623
1632
.10.1007/s11012-012-9541-6
26.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
,
Vajravelu
,
K.
, and
Van Gorder
,
R. A.
,
2012
, “
Solutions for the Magnetohydrodynamic Stagnation-Point Flow of a Power-Law Fluid Over a Shrinking Sheet
,”
ASME J. Appl. Mech.
,
79
, p.
024503
.10.1115/1.4005584
You do not currently have access to this content.