In this paper, the evaporation kinetics of microliter-sized sessile droplets of gold colloids (∼250 nm in particle diameters) was experimentally studied on micropatterned superhydrophobic surfaces, compared with those of pure water on a planar hydrophobic surface. The structural microtopography of superhydrophobic surfaces was designed to have a constant air fraction (∼0.8) but varying array patterns including pillars, lines, and wells. During evaporation in a room condition, the superhydrophobic surfaces exhibited a stronger pinning effect than a planar surface, especially in the initial evaporation stage, with significant variations by the surface topographies. Compared to a pure water droplet, colloids exhibited further promoted pinning effects, mainly in the later stage of evaporation. While the well-known evaporative mass transport law of sessile droplets (i.e., linear law of “V2/3t”) was generally applicable to the superhydrophobic surfaces, much smaller evaporation rate constants were measured on the patterned superhydrophobic surfaces than on a planar hydrophobic surface. A colloidal droplet further showed lower evaporation rate constants than a pure water droplet as the concentration of particles in the droplets increased over the evaporation. Such transition was more dramatic on a planar surface than on the micropatterned surfaces. Whereas there was no clear correlation between evaporation mode and the evaporation rate observed on the superhydrophobic surfaces, the prominent decrease of the evaporation rate on the planar hydrophobic surface was accompanied with the onset of a second pinning mode.

References

1.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Themal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
,
34
, pp.
219
246
.
2.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
3.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
, pp.
58
64
.
4.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
5.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renew. Sustain. Energ. Rev.
,
11
(
5
), pp.
797
817
.
6.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transf.
,
50
(
19-20
), pp.
4105
4116
.
7.
Sefiane
,
K.
,
Skilling
,
J.
, and
MacGillivray
,
J.
, 2008, “
Contact Line Motion and Dynamic Wetting of Nanofluid Solutions
,”
Adv. Colloid Interface Sci.
,
138
, pp.
101
120
.
8.
Chon
,
C. H.
,
Paik
,
S.
,
Tipton
,
J. B.
, and
Kihm
,
K. D.
, 2007, “
Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets
,”
Langmuir
,
23
, pp.
2953
2960
.
9.
Sefiane
,
K.
, and
Bennacer
,
R.
, 2009, “
Nanofluids Droplets Evaporation Kinetics and Wetting Dynamics on Rough Heated Substrates
,”
Adv. Colloid Interface Sci.
,
147-148
, pp.
263
271
.
10.
Fang
,
X.
,
Li
,
B.
,
Petersen
,
E.
,
Seo
,
Y.-S.
,
Samuilov
,
V. A.
,
Chen
,
Y.
,
Sokolov
,
J. C.
,
Shew
,
C.-Y.
, and
Rafailovich
,
M. H.
, 2006, “
Drying of DNA Droplets
,”
Langmuir
,
22
, pp.
6308
6312
.
11.
Tan
,
S.
,
Zhang
,
X.
,
Zhao
,
N.
, and
Xu
,
J.
, 2007, “
Simulation of Sessile Water-Droplet Evaporation on Superhydrophobic Polymer Surfaces
,”
Chin. J. Chem. Phys.
,
20
, pp.
140
144
.
12.
McHale
,
G.
,
Aqil
,
S.
,
Shirtcliffe
,
N. J.
,
Newton
,
M. I.
, and
Erbil
,
H. Y.
, 2005, “
Analysis of Droplet Evaporation on a Superhydrophobic Surface
,”
Langmuir
,
21
, pp.
11053
11060
.
13.
Kusumaatmaja
,
H.
, and
Yeomans
,
J. M.
, 2007, “
Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces
,”
Langmuir
,
23
(
11
), pp.
6019
6032
.
14.
Jung
,
Y. C.
, and
Bhushan
,
B.
, 2008, “
Wetting Behaviour During Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces
,”
J. Microscopy
,
229
(
1
), pp.
127
140
.
15.
Choi
,
C.-H.
, and
Kim
,
C.-J.
, 2009, “
Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights
,”
Langmuir
,
25
, pp.
7561
7567
.
16.
Marmur
,
A.
, 2004, “
The Lotus Effect: Superhydrophobicity and Metastability
,”
Langmuir
,
20
(
9
), pp.
3517
3519
.
17.
Lafuma
,
A.
, and
Quere
,
D.
, 2003, “
Superhydrophobic States
,”
Nature Mater.
,
2
, pp.
457
460
.
18.
Blossey
,
R.
, 2003, “
Self-Cleaning Surfaces-Virtual Realities
,”
Nature Mater.
,
2
, pp.
301
306
.
19.
Callies
,
M.
, and
Quere
,
D.
, 2005, “
On Water Repellency
,”
Soft Matter
,
1
(
1
), pp.
55
61
.
20.
Martines
,
E.
,
Seunarine
,
K.
,
Morgan
,
H.
,
Gadegaard
,
N.
,
Wilkinson
,
C. D. W.
, and
Riehle
,
M. O.
, 2005, “
Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns
,”
Nano Lett.
,
5
(
10
), pp.
2097
2103
.
21.
Bico
,
J.
,
Thiele
,
U.
, and
Quere
,
D.
, 2002, “
Wetting of Textured Surfaces
,”
Colloid Surf. A
,
206
, pp.
41
46
.
22.
Nakajima
,
F.
,
Ogasawara
,
Y.
,
Motohisa
,
J.
, and
Fukui
,
T.
, 2001, “
GaAs Dot-Wire Coupled Structures Grown by Selective Area Metalorganic Vapor Phase Epitaxy and Their Application to Single Electron Devices
,”
J. Appl. Phys.
,
90
, pp.
2606
2011
.
23.
Choi
,
C.-H.
, and
Kim
,
C.-J.
, 2006, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
, p.
066001
.
24.
Choi
,
C.-H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C.-M.
, and
Kim
,
C.-J.
, 2006, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluids,
18
, p.
087105
.
25.
Lee
,
C.
,
Choi
,
C.-H.
, and
Kim
,
C.-J.
, 2008, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
, p.
064501
.
26.
Xu
,
W.
,
Leeladhar
,
R.
,
Tsai
,
Y.-T.
,
Yang
,
E.-H.
, and
Choi
,
C.-H.
, 2011, “
Evaporative Self-Assembly of Nanowires on Superhydrophobic Surfaces of Nanotip Latching Structures
,”
Appl. Phys. Lett.
,
98
(
7
), pp.
073101
073103
.
27.
Wenzel
,
R.
, 1936, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
, pp.
988
994
.
28.
Cassie
,
A. B. D.
, and
Baxter
,
S.
, 1944, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
29.
Barbieri
,
L.
,
Wagner
,
E.
, and
Hoffmann
,
P.
, 2007, “
Water Wetting Transition Parameters of Perfluorinated Substrates With Periodically Distributed Flat-Top Microscale Obstacles
,”
Langmuir
,
23
, pp.
1723
1734
.
30.
Sefiane
,
K.
, 2004, “
Effect of Nonionic Surfactant on Wetting Behavior of an Evaporating Drop Under a Reduced Pressure Environment
,”
J. Colloid Interface Sci.
,
272
(
2
), pp.
411
419
.
31.
Lee
,
C.
, and
Kim
,
C.-J.
, 2009, “
Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls
,”
Langmuir
,
25
(
21
), pp.
12812
12818
.
32.
Moffat
,
J. R.
,
Sefiane
,
K.
, and
Shanahan
,
M. E. R.
, 2009, “
Effect of TiO2 Nanoparticles on Contact Line Stick-slip Behavior of Volatile Drops
,”
J. Phys. Chem. B
,
113
(
26
), pp.
8860
8866
.
33.
Picknett
,
R. G.
, and
Bexon
,
R.
, 1977, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.
34.
Erbil
,
H. Y.
,
McHale
,
G.
, and
Newton
,
M. I.
, 2002, “
Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode
,”
Langmuir
,
18
(
7
), pp.
2636
2641
.
35.
Arcamone
,
J.
,
Dujardin
,
E.
,
Rius
,
G.
, ,
Pérez-Murano
,
F.
, and
Ondarçuhu
,
T.
, 2007, “
Evaporation of Femtoliter Sessile Droplets Monitored With Nanomechanical Mass Sensors
,”
J. Phys. Chem. B
,
111
(
45
), pp.
13020
13027
.
36.
Golovko
,
D. S.
,
Butt
,
H.-J.
, and
Bonaccurso
,
E.
, 2009, “
Transition in the Evaporation Kinetics of Water Microdrops on Hydrophilic Surfaces
,”
Langmuir
,
25
, pp.
75
78
.
37.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, 2003, “
Spreading of Nanofluids on Solids
,”
Nature
,
423
(
6936
), pp.
156
159
.
38.
Chen
,
R.-H.
,
Phuoc
,
T. X.
, and
Martello
,
D.
, 2010, “
Effects of Nanoparticles on Nanofluid Droplet Evaporation
,”
Int. J. Heat Mass Transf.
,
53
(
19-20
), pp.
3677
3682
.
39.
Ressine
,
A.
,
Finnskog
,
D.
,
Marko-Varga
,
G.
, and
Laurell
,
T.
, 2008, “
Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis
,”
NanoBioTechnology
,
4
(
1
), pp.
18
27
.
40.
de Gans
,
B.-J.
, and
Schubert
,
U. S.
, 2004, “
Inkjet Printing of Well-Defined Polymer Dots and Arrays
,”
Langmuir
,
20
(
18
), pp.
7789
7793
.
41.
Li
,
Q.
,
Zhu
,
Y. T.
,
Kinloch
,
I. A.
, and
Windle
,
A. H.
, 2006, “
Self-Organization of Carbon Nanotubes in Evaporating Droplets
,”
J. Phys. Chem. B
,
110
(
28
), pp.
13926
13930
.
You do not currently have access to this content.