Periodic time-dependent behavior of a rarefied gas between two parallel planes caused by an oscillatory heating of one plane is numerically studied based on the linearized Boltzmann equation. Detailed numerical data of the energy transfer from the heated plane to the unheated plane and the forces of the gas acting on the boundaries are provided for a wide range of the gas rarefaction degree and the oscillation frequency. The flow is characterized by a coupling of heat conduction and sound waves caused by repetitive expansion and contraction of the gas. For a small gas rarefaction degree, the energy transfer is mainly conducted by sound waves, except for very low frequencies, and is strongly affected by the resonance of the waves. For a large gas rarefaction degree, the resonance effects become insignificant and the energy transferred to the unheated plane decreases nearly monotonically as the frequency increases. The force of the gas acting on the heated boundary shows a remarkable minimum with respect to the frequency even in the free molecular limit.

1.
Sone
,
Y.
, 2007,
Molecular Gas Dynamics
,
Birkhäuser
,
New York
.
2.
Cercignani
,
C.
, 2000,
Rarefied Gas Dynamics
,
Cambridge University Press
,
Cambridge
.
3.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
4.
Cercignani
,
C.
, 2006,
Slow Rarefied Flows: Theory and Application to Micro-Electro-Mechanical Systems
,
Birkhäuser
,
New York
.
5.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1994, “
Simulation of Heat and Momentum Transfer in Complex Microgeometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
647
655
.
6.
Larrodé
,
F. E.
,
Housiadas
,
C.
, and
Drossinos
,
Y.
, 2000, “
Slip-Flow Heat Transfer in Circular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2669
2680
.
7.
Hadjiconstantinou
,
N. G.
, and
Simek
,
O.
, 2002, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
356
364
.
8.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
765
773
.
9.
Wang Chang
,
C. S.
, and
Uhlenbeck
,
G. E.
, 1953, “
The Heat Transport Between Two Parallel Plates as Functions of the Knudsen Number
,” Engineering Research Institute, University of Michigan, Project No. M999.
10.
Gross
,
E. P.
, and
Ziering
,
S.
, 1959, “
Heat Flow Between Parallel Plates
,”
Phys. Fluids
1070-6631,
2
, pp.
701
712
.
11.
Liu
,
C. Y.
, and
Lees
,
L.
, 1961, “
Kinetic Theory Description of Plane Compressible Couette Flow
,” in
Rarefied Gas Dynamics
,
L.
Talbot
, ed.,
Academic
,
New York
, pp.
391
428
.
12.
Willis
,
D. R.
, 1963, “
Heat Transfer in a Rarefied Gas Between Parallel Plates at Large Temperature Ratios
,” in
Rarefied Gas Dynamics
,
J. A.
Laurmann
, ed.,
Academic
,
New York
, pp.
209
225
.
13.
Bassanini
,
P.
,
Cercignani
,
C.
, and
Pagani
,
C. D.
, 1967, “
Comparison of Kinetic Analyses of Linearized Heat Transfer Between Parallel Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
447
460
.
14.
Asmolov
,
E. S.
,
Makashev
,
N. K.
, and
Nosik
,
V. I.
, 1979, “
Heat Transfer Between Plane Parallel Plates in a Gas of Maxwellian Molecules
,”
Sov. Phys. Dokl.
0038-5689,
24
, pp.
892
894
.
15.
Santos
,
A.
,
Brey
,
J. J.
, and
Garzó
,
V.
, 1986, “
Kinetic Model for Steady Heat Flow
,”
Phys. Rev. A
1050-2947,
34
, pp.
5047
5050
.
16.
Ohwada
,
T.
,
Aoki
,
K.
, and
Sone
,
Y.
, 1989, “
Heat Transfer and Temperature Distribution in a Rarefied Gas Between Two Parallel Plates With Different Temperatures: Numerical Analysis of the Boltzmann Equation for a Hard Sphere Molecule
,” in
Rarefied Gas Dynamics
,
E. P.
Muntz
,
D. P.
Weaver
, and
D. H.
Campbell
, eds.,
AIAA
,
Washington, DC
, pp.
70
81
.
17.
Santos
,
A.
, and
Garzó
,
V.
, 1995, “
Exact Non-Linear Transport From the Boltzmann Equation
,”
Rarefied Gas Dynamics
, Vol.
I
,
J.
Harvey
and
G.
Lord
, eds.,
Oxford University Press
,
Oxford
, pp.
13
21
.
18.
Ohwada
,
T.
, 1996, “
Heat Flow and Temperature and Density Distributions in a Rarefied Gas Between Parallel Plates With Different Temperatures. Finite-Difference Analysis of the Nonlinear Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids
1070-6631,
8
, pp.
2153
2160
.
19.
Kosuge
,
S.
,
Aoki
,
K.
, and
Takata
,
S.
, 2001, “
Heat Transfer in a Gas Mixture Between Two Parallel Plates
,”
Rarefied Gas Dynamics
,
T. J.
Bartel
and
M. A.
Gallis
, eds.,
AIP
,
Melville, NY
, pp.
289
296
.
20.
Sone
,
Y.
, 1965, “
Effect of Sudden Change of Wall Temperature in a Rarefied Gas
,”
J. Phys. Soc. Jpn.
0031-9015,
20
, pp.
222
229
.
21.
Aoki
,
K.
,
Sone
,
Y.
,
Nishino
,
K.
, and
Sugimoto
,
H.
, 1991, “
Numerical Analysis of Unsteady Motion of a Rarefied Gas Caused by Sudden Change of Wall Temperature With Special Interest in the Propagation of a Discontinuity in the Velocity Distribution Function
,”
Rarefied Gas Dynamics
,
A. E.
Beylich
, ed.,
VCH
,
Weinheim
, pp.
222
231
.
22.
Wadsworth
,
D. C.
,
Erwin
,
D. A.
, and
Muntz
,
E. P.
, 1993, “
Transient Motion of a Confined Rarefied Gas Due to Wall Heating and Cooling
,”
J. Fluid Mech.
0022-1120,
248
, pp.
219
235
.
23.
Kassoy
,
D. R.
, 1979, “
The Response of a Confined Gas to a Thermal Disturbance. I: Slow Transients
,”
SIAM J. Appl. Math.
0036-1399,
36
, pp.
624
634
.
24.
Clarke
,
J. F.
,
Kassoy
,
D. R.
, and
Riley
,
N.
, 1984, “
Shock Generated in a Confined Gas Due to Rapid Heat Addition at the Boundary. I: Weak Shock Waves
,”
Proc. R. Soc. London, Ser. A
0950-1207,
393
, pp.
309
329
.
25.
Manela
,
A.
, and
Hadjiconstantinou
,
N. G.
, 2007, “
On the Motion Induced in a Small-Scale Gap Due to Instantaneous Boundary Heating
,”
J. Fluid Mech.
0022-1120,
593
, pp.
453
462
.
26.
Manela
,
A.
, and
Hadjiconstantinou
,
N. G.
, 2008, “
Gas Motion Induced by Unsteady Boundary Heating in a Small-Scale Slab
,”
Phys. Fluids
1070-6631,
20
, p.
117104
.
27.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
0031-899X,
94
, pp.
511
525
.
28.
Welander
,
P.
, 1954, “
On the Temperature Jump in a Rarefied Gas
,”
Ark. Fys.
0365-2440,
7
, pp.
507
553
.
29.
Sone
,
Y.
,
Ohwada
,
T.
, and
Aoki
,
K.
, 1989, “
Temperature Jump and the Knudsen Layer: Numerical Analysis of the Linearized Boltzmann Equation for a Hard Sphere Gas
,”
Phys. Fluids A
0899-8213,
1
, pp.
363
370
.
30.
Sone
,
Y.
,
Ohwada
,
T.
, and
Aoki
,
K.
, 1989, “
Evaporation and Condensation on a Plane Condensed Phase: Numerical Analysis of the Linearized Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
1
, pp.
1398
1405
.
31.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
, 1989, “
Numerical Analysis of the Shear and Thermal Creep Flows of a Rarefied Gas Over a Plane Wall on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
1
, pp.
1588
1599
.
32.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
, 1989, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
1
, pp.
2042
2049
.
33.
Sone
,
Y.
,
Takata
,
S.
, and
Ohwada
,
T.
, 1990, “
Numerical Analysis of the Plane Couette Flow of a Rarefied Gas on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules
,”
Eur. J. Mech. B/Fluids
0997-7546,
9
, pp.
273
288
.
34.
Takata
,
S.
,
Sone
,
Y.
, and
Aoki
,
K.
, 1993, “
Numerical Analysis of a Uniform Flow of a Rarefied Gas Past a Sphere on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
5
, pp.
716
737
.
35.
Sharipov
,
F.
, and
Kalempa
,
D.
, 2008, “
Oscillatory Couette Flow at Arbitrary Oscillation Frequency Over the Whole Range of the Knudsen Number
,”
Microfluid. Nanofluid.
1613-4982,
4
, pp.
363
374
.
36.
Morse
,
P.
, and
Ingard
,
K. U.
, 1968,
Theoretical Acoustics
,
Princeton University Press
,
Princeton, NJ
, Chap. 6.
37.
Park
,
J. H.
,
Bahukudumbi
,
P.
, and
Beskok
,
A.
, 2004, “
Rarefaction Effects on Shear Driven Oscillatory Gas Flows: A Direct Simulation Monte Carlo Study in the Entire Knudsen Regime
,”
Phys. Fluids
1070-6631,
16
, pp.
317
330
.
38.
Hadjiconstantinou
,
N. G.
, 2005, “
Oscillatory Shear-Driven Gas Flows in the Transition and Free-Molecular-Flow Regimes
,”
Phys. Fluids
1070-6631,
17
, p.
100611
.
39.
Abramowitz
,
M.
, and
Stegun
,
I.
, 1965,
Handbook of Mathematical Functions
,
Dover
,
New York
, p.
1001
.
40.
Sharipov
,
F.
,
Marques
,
W.
, Jr.
, and
Kremer
,
G. M.
, 2002, “
Free Molecular Sound Propagation
,”
J. Acoust. Soc. Am.
0001-4966,
112
, pp.
395
401
.
You do not currently have access to this content.