Abstract

Overall transmittance of porous cerium dioxide is measured in the spectral range of 900–1700 nm using dispersive spectroscopy. Dense and porous samples of cerium dioxide with average porosities of 0.08 and 0.72, respectively, are investigated. The transmittance of both sample types increases with decreasing thickness, and this trend is more pronounced for the dense samples. The on-average spectrally increasing transmittance of the dense samples is attributed to the decreasing absorption by bulk cerium dioxide with radiation wavelength. The transmittance of the porous samples, on the other hand, remains approximately constant over the spectrum. Porous samples attenuate radiation stronger than the dense samples at any wavelength in the considered range, and it is hypothesized that this effect is due to more intense scattering. Sharp local variations of the transmittance are observed for both sample types.

References

1.
Palumbo
,
R.
,
Keunecke
,
M.
, Mö
ller
,
S.
, and
Steinfeld
,
A.
, 2004, “
Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation
,”
Energy
,
29
, pp.
727
744
.
2.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
,
R.
Meiers
, ed.,
Academic Press
,
San Diego
, Vol.
15
, pp.
237
256
.
3.
Müller
,
R.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
, 2008, “
Transient Heat Transfer in a Directly-Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
,
28
, pp.
524
531
.
4.
Kamiuto
,
K.
,
Iwamoto
,
M.
,
Nishimura
,
T.
, and
Sato
,
M.
, 1991, “
Radiation-Extinction Coefficients of Packed-Sphere Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
,
45
, pp.
93
96
.
5.
Lopes
,
R.
,
Moura
,
L.
,
Baillis
,
D.
, and
Sacadura
,
J.-F.
, 2001, “
Directional Spectral Emittance of a Packed Bed: Correlation Between Theoretical Prediction and Experimental Data
,”
ASME Trans. J. Heat Transfer
,
123
, pp.
240
248
.
6.
Dombrovsky
,
L.
,
Tagne
,
H.
,
Baillis
,
D.
, and
Gremillard
,
L.
, 2007, “
Near-Infrared Radiative Properties of Porous Zirconia Ceramics
,”
Infrared Phys. Technol.
,
51
(
1
), pp.
44
53
.
7.
Eldridge
,
J.
, and
Spuckler
,
C.
, 2008, “
Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
91
(
5
), pp.
1603
1611
.
8.
Lallich
,
S.
,
Enguehard
,
F.
, and
Baillis
,
D.
, 2009, “
Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices
,”
J. Heat Transfer
,
131
, p.
082701
.
9.
Baillis
,
D.
,
Arduini-Schuster
,
M.
, and
Sacadura
,
J.
, 2002, “
Identification of Spectral Radiative Properties of Polyurethane Foam From Hemispherical and Bi-Directional Transmittance and Reflectance Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
297
306
.
10.
Coquard
,
R.
,
Rochais
,
D.
, and
Baillis
,
D.
, 2009, “
Experimental Investigations of the Coupled Conductive and Radiative Heat Transfer in Metallic/Ceramic Foams
,”
Int. J. Heat Mass Transfer
,
052
(
21–22
), pp.
4907
4918
.
11.
Agarwal
,
B.
, and
Mengüç
,
M.
, 1991, “
Forward and Inverse Analysis of Single and Multiple Scattering of Collimated Radiation in an Axisymmetric System
,”
Int. J. Heat Mass Transfer
,
34
, pp.
633
647
.
12.
Sacadura
,
J.
, and
Baillis
,
D.
, 2002, “
Experimental Characterization of Thermal Radiation Properties of Dispersed Media
,”
Int. J. Therm. Sci.
,
41
, pp.
699
707
.
13.
Dombrovsky
,
L. A.
, and
Baillis
,
D.
, 2010,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begell House
,
Redding, CT
.
14.
Chueh
,
W.
, and
Haile
,
S.
, 2009, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
(
8
), pp.
735
739
.
15.
Chueh
,
W.
, and
Haile
,
S.
, 2010, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 mitigation
,”
Philos. Trans. R. Soc. A
,
368
(1923), p.
3269
.
16.
Abanades
,
S.
, and
Flamant
,
G.
, 2006, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.
17.
Chueh
,
W.
,
Falter
,
C.
,
Abott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S.
, and
Steinfeld
,
A.
, 2010, “
High-Flux Solar Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
, pp.
1797
1801
.
18.
Liang
,
Z.
,
Chueh
,
W.
,
Haile
,
S.
,
Ganesan
,
K.
, and
Lipiński
,
W.
, “
Experimental Determination of Transmittance of Porous Cerium Dioxide Media in the Spectral Range 300–1100 nm
,”
Exp. Heat Transfer
(in press).
19.
Özer
,
N.
, 2001, “
Optical Properties and Electrochromic Characterization of Sol–Gel Deposited Ceria Films
,”
Sol. Energy Mater. Sol. Cells
,
68
, pp.
391
400
.
20.
Villafán-Vidales
,
H.
,
Arancibia-Bulnes
,
C.
,
Dehesa-Carrasco
,
U.
, and
Romero-Parades
,
H.
, 2009, “
Monte Carlo Radiative Transfer Simulation of a Cavity Solar Reactor for the Reduction of Cerium Oxide
,”
Int. J. Hydrogen Energy
,
34
, pp.
115
124
.
21.
Data from Alfa Aesar, www.alfa.com, Retrieved May 2010.
22.
Modest
,
M.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego
.
23.
Lipiński
,
W.
,
Guillot
,
E.
,
Olalde
,
G.
, and
Steinfeld
,
A.
, 2008, “
Transmittance Enhancement of Packed-Bed Particulate Media
,”
Exp. Heat Transfer
,
21
, pp.
73
82
.
24.
Patsalas
,
P.
,
Logothetidis
,
S.
, and
Metaxa
,
C.
, 2002, “
Optical Performance of Nanocrystalline Transparent Ceria Films
,”
Appl. Phys. Lett.
,
81
, pp.
466
468
.
25.
Sun
,
L.-L.
,
Cheng
,
Y.
, and
Ji
,
G.-F.
, 2010, “
Elastic and Optical Properties of CeO2 via First-Principles Calculations
,”
J. At. Mol. Sci.
,
1
, pp.
143
151
.
26.
Bohren
,
C.
, and
Huffman
,
D.
, 1998,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
You do not currently have access to this content.