Spray cooling heat transfer measurements of PF-5060 on smooth flat surfaces were obtained using a microheater array operated at constant temperatures using two nozzles (hollow cone and full cone), three nozzle-to-heater standoff distances (3, 5, and 7 mm), four nozzle operating pressures (207 kPa, 345 kPa, 483 kPa, and 689 kPa), and three subcooling levels (11 °C, 21 °C, 31 °C). A separate test setup was used to measure the local normal pressures produced by the sprays. The critical heat flux was found to depend primarily on the local normal pressure and the liquid subcooling. Furthermore, the temperature at which CHF occurred was within a narrow temperature band (about ±5 °C) for smooth flat surfaces over a wide range of spray conditions. The single-phase correlation previously proposed by the authors and the CHF correlation presented in this work were then combined to predict local spray cooling curve within ±25% of the measured values in the spray impingement zone.

References

1.
Kim
,
J.
, 2007, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
, pp.
753
767
.
2.
Manglik
,
R. M.
, and
Jog
,
M. A.
, 2009, “
Molecular-to-Large-Scale Heat Transfer With Multiphase Interfaces: Current Status and New Directions
,”
ASME J. Heat Transfer
,
131
,
121001
.
3.
Ashwood
,
A. C.
, and
Shedd
,
T. A.
, 2007, “
Spray Cooling With Mixtures of Dielectric Fluids
,”
23rd IEEE SEMI-THERM Symposium
, pp.
144
149
.
4.
Shedd
,
T. A.
, 2007, “
Next Generation Spray Cooling: High Heat Flux Management in Compact Space
,”
Heat Transfer Eng.
,
28
(
2
), pp.
87
92
.
5.
Rybicki
,
J. R.
, and
Mudawar
,
I.
, 2006, “
Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
,
49
, pp.
5
16
.
6.
Abbasi
,
B.
,
Kim
,
J.
, and
Marshall
,
A.
, 2010, “
Dynamic Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients
,”
Int. J. Multiphase Flow
,
36
(
6
), pp.
491
502
.
7.
Abbasi
,
B.
, and
Kim
,
J.
, 2011, “
Development of a General, Dynamic Pressure-Based, Single-Phase Spray Cooling Heat Transfer Correlation
,”
ASME J. Heat Transfer
,
133
, pp.
052201
.
8.
Oguz
,
H. N.
, and
Prosperetti
,
A.
, 1990, “
Bubble Entrainment by the Impact of Drops on Liquid Surfaces
,”
J. Fluid Mech.
,
219
, pp.
143
179
.
9.
Prosperetti
,
A.
, and
Oguz
,
H. N.
, 1993, “
The Impact of Drops on Liquid Surface and the Underwater Noise of Rain
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
577
602
.
10.
Zhu
,
Y.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
, 2000, “
On the Mechanism of Air Entrainment by Liquid Jets at a Free Surface
,”
J. Fluid Mech.
,
404
, pp.
151
177
.
11.
Fedorchenko
,
A. I.
, and
Wang
,
A. B.
, 2004, “
On Some Common Features of Drop Impact on Liquid Surfaces
,”
Phys. Fluids
,
16
(
5
), pp.
1349
1365
.
12.
Weiss
,
D.
, and
Yarin
,
A.
, 1999, “
Single Drop Impact Onto Liqud Films: Neck Distortion, Jetting, Tiny Bubble Entrainment, and Crown Formation
,”
J. Fluid Mech.
,
385
, pp.
229
254
.
13.
Josserand
,
C.
, and
Zaleski
,
S.
, 2003, “
Droplet Splashing on a Thin Film
,”
Phys. Fluids
,
15
(
6
), pp.
1650
1657
.
14.
Horacek
,
B.
,
Kim
.
J.
, and
Kiger
,
K. T.
, 2003, “
Effects of Noncondensable Gas and Subcooling on the Spray Cooling an Isothermal Surface
,”
Proceedings of ASME IMECE–2003
,
Washington, DC
.
15.
Horacek
,
B.
,
Kim
.
J.
, and
Kiger
,
K. T.
, 2004, “
Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
614
625
.
16.
Horacek
,
B.
,
Kiger
,
K. T.
, and
Kim
.
J.
, 2005, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1425
1438
.
17.
Moreno
,
G.
,
You
,
S.
, and
Steinthorsson
,
E.
, 2007, “
Spray Cooling Performance of Single and Multi-Jet Spray Nozzles Using Subcooled FC–72
,”
Proceedings of HT2007, ASME-JSME Thermal Engineering Summer Heat Transfer Conference
,
Vancouver, British Columbia, Canada
.
18.
Visaria
,
M.
, and
Mudawar
,
I.
, 2008, “
Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5269
5278
.
19.
Cabrera
,
E.
, and
Gonzalez
,
J. E.
, 2003, “
Heat Flux Correlation for Spray Cooling in the Nucleate Boiling Regime
,”
Exp. Heat Transfer
,
16
, pp.
19
44
.
20.
Nishio
,
S.
,
Gotoh
,
T.
, and
Nagal
,
N.
, 1998, “
Observation of Boiling Structures in High Heat-Flux Boiling
,”
Int. J. Heat Mass Transfer
,
41
, pp.
3191
3201
.
21.
Sharma
,
A.
, and
Ruckenstein
,
E.
, 1989, “
Dewetting of Solids by Formation of Holes in Macroscopic Liquid Films
,”
J. Colloid Interface Sci.
,
133
(
2
), pp.
358
368
.
22.
Dhiman
,
R.
, and
Chandra
,
S.
, 2008, “
Rupture of Radially Spreading Liquid Films
,”
Phys. Fluids
,
20
, p.
092104
.
23.
Lin
,
S. P.
, and
Jiang
,
W. Y.
, 2003, “
Absolute and Convective Instability of a Radially Expanding Liquid Sheet
,”
Phys. Fluids
,
15
(
6
), pp.
1745
1754
.
24.
Estes
,
K.
, and
Muawar
,
I.
, 1995, “
Correlation for Sauter Mean Diameter and Critical Heat Flux for Spray Cooling Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.
25.
Visaria
,
M.
, and
Mudawar
,
I.
, 2007, “
A Systematic Approach to Predicting Critical Heat Flux for Inclined Sprays
,”
ASME J. Heat Transfer
,
129
, pp.
452
459
.
26.
Visaria
,
M.
, and
Mudawar
,
I.
, 2008, “
Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2398
2410
.
27.
Visaria
,
M.
, and
Mudawar
,
I.
, 2009, “
Application of Two-Phase Spray Cooling for Thermal Management of Electronic Devices
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
784
793
.
28.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
, 2009, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
501
512
.
29.
Moreira
,
A. L. N.
,
Carvalho
,
J.
, and
Panao
,
M. R. O.
, 2006, “
An Experimental Methodology to Quantify the Spray Cooling Event at Intermittent Spray Impact
,”
Int. J. Heat Mass Transfer
,
28
, pp.
191
202
.
30.
Moreira
,
A. L. N.
, and
Panao
,
M. R. O.
, 2007, “
Heat Transfer at Multiple-Intermittent Impacts of a Hollow Cone Spray
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4132
4151
.
31.
Panao
,
M. R. O.
, and
Moreira
,
A. L. N.
, 2009, “
Heat Transfer Correlation for Intermittent Spray Impingement: A Dynamic Approach
,”
Int. J. Therm. Sci.
,
48
, pp.
1853
1862
.
32.
Puterbaugh
,
R. L.
,
Yerkes
,
K. L.
, and
Michalak
,
T. E.
, 2007, “
Cooling Performance of a Partially-Confined FC–72 Spray: The Effect of Dissolved Air
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
, January 8–11, 2007,
Reno, NV
.
33.
Chow
,
L. C.
,
Sehmbey
,
M. S.
, and
Pais
,
M. R.
, 1996, “
Critical Heat Flux in Spray Cooling
,”
AIAA 33rd Aerospace Sciences Meeting and Exhibit
, January 1996,
Reno, NV
.
34.
Yang
,
J.
,
Pais
,
M. R.
, and
Chow
,
L. C.
, 1993, “
Critical Heat Flux Limits in Secondary Gas Atomized Liquid Spray Cooling
,”
Exp. Heat Transfer
,
6
, pp.
55
66
.
35.
Wendelstrof
,
J.
,
Spitzer
,
K. H.
, and
Wendelstrof
,
R.
, 2008, “
Spray Water Cooling Heat Transfer at High Temperatures and Liquid Mass Fluxes
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4902
4910
.
36.
Silk
,
E. A.
,
Kim
.
J.
, and
Kiger
,
K. T.
, 2006, “
Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4910
4920
.
37.
Silk
,
E.
,
Kim
,
J.
, and
Kiger
,
K.
, 2007, “
Energy Conservation Based Spray Cooling CHF Correlation for Flat Surfaces Small Area Heaters
,”
ASME/JSME Thermal Engineering Summer Heat Transfer Conference
, July 8–12, 2007,
Vancouver, British Columbia, Canada
.
38.
Rini
,
D. P.
,
Chen
,
R. H.
, and
Chow
,
L. C.
, 2002, “
Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC–72 Spray Cooling
,”
ASME J. Heat Transfer
,
124
, pp.
63
72
.
39.
Chen
,
R. H.
,
Chow
L. C.
, and
Navedo
,
J. E.
, 2002, “
Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4033
4043
.
40.
Chen
,
R. H.
,
Chow
L. C.
, and
Navedo
,
J. E.
, 2002, “
Optimal Spray Characteristics in Water Spray Cooling
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5095
5099
.
41.
Chen
,
R. H.
,
Tan
,
D. S.
,
Lin
,
K. C.
,
Chow
,
L. C.
,
Griffin
,
A. R.
, and
Rini
,
D. P.
, 2008, “
Droplet and Bubble Dynamics in Saturated FC–72 Spray Cooling on a Smooth Surface
,”
ASME J. Heat Transfer
,
130
, p.
101501
.
42.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Horizontal Heaters During Pool Boiling of FC–72
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
386
393
.
43.
Bae
,
S.
,
Kim
,
M. H.
, and
Kim
,
J.
, 1999, “
Improved Technique to Measure Time and Space Resolved Heat Transfer Under Single Bubbles During Saturated Pool Boiling of FC–72
,”
Exp. Heat Transfer
,
12
(
3
), pp.
265
278
.
44.
Kearns
,
D.
,
Du
,
J. H.
,
Chen
,
R. H.
, and
Chow
,
L. C.
, 2002, “
A Parametric Study of Dielectric Spray Cooling of a Row of Heaters in a Narrow Channel
,”
18th IEEE SEMI-THERM Symposium
, pp.
164
168
.
45.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, 1997, “
Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
247
267
.
46.
Elbaum
,
M.
,
Lipson
,
G.
, and
Wettlaufer
,
J. S.
, 1995, “
Evaporation Preempts Complete Wetting
,”
Europhys. Lett.
,
29
(
6
), pp.
457
462
.
47.
Carey
,
V. P.
, 2007,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed.,
Taylor & Francis
,
London
.
48.
Chow
,
L. C.
,
Sehmbey
,
M. S.
, and
Pais
,
M. R.
, 1997, “
High Heat Flux Spray Cooling
,”
Adv. Heat Transfer
,
8
, pp.
291
318
.
You do not currently have access to this content.