We report an experimental investigation of a novel, high performance ultrathin manifold microchannel heat sink. The heat sink consists of impinging liquid slot-jets on a structured surface fed with liquid coolant by an overlying two-dimensional manifold. We developed a fabrication and packaging procedure to manufacture prototypes by means of standard microprocessing. A closed fluid loop for precise hydrodynamic and thermal characterization of six different test vehicles was built. We studied the influence of the number of manifold systems, the width of the heat transfer microchannels, the volumetric flow rate, and the pumping power on the hydrodynamic and thermal performance of the heat sink. A design with 12.5 manifold systems and 25μm wide microchannels as the heat transfer structure provided the optimum choice of design parameters. For a volumetric flow rate of 1.3 l/min we demonstrated a total thermal resistance between the maximum heater temperature and fluid inlet temperature of 0.09cm2K/W with a pressure drop of 0.22 bar on a 2×2cm2 chip. This allows for cooling power densities of more than 700W/cm2 for a maximum temperature difference between the chip and the fluid inlet of 65 K. The total height of the heat sink did not exceed 2 mm, and includes a 500μm thick thermal test chip structured by 300μm deep microchannels for heat transfer. Furthermore, we discuss the influence of elevated fluid inlet temperatures, allowing possible reuse of the thermal energy, and demonstrate an enhancement of the heat sink cooling efficiency of more than 40% for a temperature rise of 50 K.

1.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
, 2003, “
Air-Cooling Extension—Performance Limits for Processor Cooling Applications
,”
Proceedings of the 19th IEEE SEMI-THERM Symposium
, pp.
74
81
.
2.
Brunschwiler
,
T.
,
Smith
,
B.
,
Ruetsche
,
E.
, and
Michel
,
B.
, 2009, “
Toward Zero-Emission Data Centers Through Direct Reuse of Thermal Energy
,”
IBM J. Res. Dev.
0018-8646,
53
(
3
), pp.
11:1
11:13
.
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
Implications of High-Performance Heat Sinking for Electron Devices
,”
IEEE Trans. Electron Devices
0018-9383,
28
(
10
), pp.
1230
1231
.
4.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
, 2007, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
0145-7632,
28
(
4
), pp.
258
281
.
5.
Kandlikar
,
S. G.
, 2005, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
0145-7632,
26
(
8
), pp.
5
14
.
6.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
, 2004, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
8
(
3
), pp.
183
205
.
7.
Chen
,
Y. P.
, and
Cheng
,
P.
, 2002, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
13
), pp.
2643
2648
.
8.
Chen
,
Y. P.
, and
Cheng
,
P.
, 2005, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
7
), pp.
931
938
.
9.
Perret
,
C.
,
Boussey
,
J.
,
Schaeffer
,
C.
, and
Coyaud
,
M.
, 2000, “
Analytic Modeling, Optimization, and Realization of Cooling Devices in Silicon Technology
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
4
), pp.
665
672
.
10.
Senn
,
S. M.
, and
Poulikakos
,
D.
, 2004, “
Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Application for Thermal Management in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
130
(
1–2
), pp.
178
191
.
11.
Bejan
,
A.
, and
Errera
,
M. R.
, 2000, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
17
), pp.
3105
3118
.
12.
Calame
,
J. P.
,
Park
,
D.
,
Bass
,
R.
,
Myers
,
R. E.
, and
Safier
,
P. N.
, 2009, “
Investigation of Hierarchically Branched-Microchannel Coolers Fabricated by Deep Reactive Ion Etching for Electronics Cooling Applications
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), pp.
051401
051409
.
13.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2009, “
Efficiency of Optimized Bifurcating Tree-Like and Parallel Microchannel Networks in the Cooling of Electronics
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1421
1430
.
14.
Harpole
,
G. M.
, and
Eninger
,
J. E.
, 1991, “
Micro-Channel Heat Exchanger Optimization
,”
Proceedings of the Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, pp.
59
63
.
15.
Copeland
,
D.
, 1995, “
Manifold Microchannel Heat Sinks: Analysis and Optimization
,”
Therm. Sci. Eng.
0918-9963,
3
(
1
), pp.
7
12
.
16.
Copeland
,
D.
,
Takahira
,
H.
,
Nakayama
,
W.
, and
Pak
,
B. C.
, 1995, “
Manifold Microchannel Heat Sinks: Theory and Experiment
,”
Proceedings of the. International Electronic Packaging Conference (INTERPACK ‘95)
, Lahaina, HI,
T. R.
Hsu
,
A.
Bar-Cohen
, and
W.
Nakayama
, eds., Vol.
2
, pp.
829
835
.
17.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
, 1996, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
Proceedungs of the Fifth InterSociety Conference on Thermal Phenomena in Electronic Systems (I-THERM V)
, Orlando, FL, pp.
96
102
.
18.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
, 1998, “
Manifold Microchannel Heat Sinks: Conjugate and Extended Models
,”
International Journal of Microelectronic Packaging, Materials and Technologies
,
1
(
2
), pp.
139
152
. 1023-6228
19.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
, 2003, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
9
), pp.
1553
1562
.
20.
Kermani
,
E.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
, and
Ohadi
,
M. M.
, 2009, “
Experimental Investigation of Heat Transfer Performance of a Manifold Microchannel Heat Sink for Cooling of Concentrated Solar Cells
,”
2009 IEEE 59th Electronic Components and Technology Conference
, San Diego, CA.
21.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Labianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
, 2006, “
High Performance and Subambient Silicon Microchannel Cooling
,”
Proceedings of the Fourth International Conference on Nanochannels, Microchannels, and Minichannels
, Limerick, Ireland, pp.
1046
1051
.
22.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
, and
Michel
,
B.
, 2006, “
Direct Liquid Jet Impingement Cooling With Micronsized Nozzle Array and Distributed Return Architecture
,”
2006 Proceedings 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
, San Diego, CA.
23.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
0142-727X to be published.
24.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2004, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
0022-1481,
126
(
1
), pp.
54
61
.
25.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
Proceedings of the Fourth ASME International Conference on Nanochannels, Microchannels, and Minichannels
, Limerick, Ireland, pp.
943
951
.
26.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
, 2008, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proceedings of the 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, pp.
1114
1125
.
You do not currently have access to this content.