A methodology is proposed, which is capable of determining the near field thermal radiation based on the Wiener chaos expansion. The approach has no explicit constraints on the geometry and temperature distributions of the system and can be easily included with classical electrodynamics simulations. A specific application is made for the near field thermal radiation between two plates and the results are in very good agreement with the classical solutions obtained from Green’s function method. Also, by comparing the resulting solutions with the solutions from Green’s function method, a new point of view for interpreting the results for the near field thermal radiation in terms of a chaos expansion is provided.
1.
Narayanaswamy
, A.
, Shen
, S.
, and Chen
, G.
, 2008, “Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,” Phys. Rev. B
0163-1829, 78
, p. 115303
.2.
Hu
, L.
, Narayanaswamy
, A.
, Chen
, X. Y.
, and Chen
, G.
, 2008, “Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law
,” Appl. Phys. Lett.
0003-6951, 92
, p. 133106
.3.
Narayanaswamy
, A.
, and Chen
, G.
, 2008, “Thermal Near-Field Radiative Transfer Between Two Spheres
,” Phys. Rev. B
0163-1829, 77
, pp. 075125
.4.
Francoeur
, M.
, and Menguc
, M. P.
, 2008, “Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer
,” J. Quant. Spectrosc. Radiat. Transf.
0022-4073, 109
, pp. 280
–293
.5.
Francoeur
, M.
, Menguc
, M. P.
, and Vaillon
, R.
, 2008, “Near-Field Radiative Heat Transfer Enhancement via Surface Phonon Polaritons Coupling in Thin Films
,” Appl. Phys. Lett.
0003-6951, 93
, p. 043109
.6.
Lee
, B. J.
, and Zhang
, Z. M.
, 2008, “Lateral Shifts in Near-Field Thermal Radiation With Surface Phonon Polaritons
,” Nanoscale Microscale Thermophys. Eng.
1556-7265, 12
, pp. 238
–250
.7.
Domingues
, G.
, Volz
, S.
, Joulain
, K.
, and Greffet
, J. J.
, 2005, “Heat Transfer Between Two Nanoparticles Through Near Field Interaction
,” Phys. Rev. Lett.
0031-9007, 94
, p. 085901
.8.
Yannopapas
, V.
, and Vitanov
, N. V.
, 2007, “Fluctuational Electrodynamics in the Presence of Finite Thermal Sources
,” Phys. Rev. Lett.
0031-9007, 99
, p. 053901
.9.
Modest
, M.
, 2003, Radiative Heat Transfer
, Academic
, San Diego
.10.
Siegel
, R.
, and Howell
, J.
, 2001, Thermal Radiation Heat Transfer
, Taylor & Francis
, New York
.11.
Park
, K.
, Basu
, S.
, King
, W. P.
, and Zhang
, Z. M.
, 2008, “Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,” J. Quant. Spectrosc. Radiat. Transf.
0022-4073, 109
, pp. 305
–316
.12.
Volokitin
, A. I.
, and Persson
, B. N. J.
, 2007, “Radiative Heat Transfer and Noncontact Friction Between Nanostructures
,” Phys. Usp.
1063-7869, 50
, pp. 879
–906
.13.
Volokitin
, A. I.
, and Persson
, B. N. J.
, 2001, “Radiative Heat Transfer and Vacuum Friction Between Nanostructures
,” Phys. Low-Dimens. Semicond. Struct.
, 5–6
, pp. 151
–172
.14.
Volokitin
, A. I.
, and Persson
, B. N. J.
, 2001, “Radiative Heat Transfer Between Nanostructures
,” Phys. Rev. B
0163-1829, 63
, p. 205404
.15.
Lee
, B. J.
, Park
, K.
, and Zhang
, Z. M.
, 2007, “Energy Pathways in Nanoscale Thermal Radiation
,” Appl. Phys. Lett.
0003-6951, 91
, p. 153101
.16.
Chapuis
, P. O.
, Laroche
, M.
, Volz
, S.
, and Greffet
, J. J.
, 2008, “Radiative Heat Transfer Between Metallic Nanoparticles
,” Appl. Phys. Lett.
0003-6951, 92
, p. 201906
.17.
Pendry
, J. B.
, 1999, “Radiative Exchange of Heat Between Nanostructures
,” J. Phys.: Condens. Matter
0953-8984, 11
, pp. 6621
–6633
.18.
Mulet
, J. P.
, Joulain
, K.
, Carminati
, R.
, and Greffet
, J. J.
, 2002, “Enhanced Radiative Heat Transfer at Nanometric Distances
,” Nanoscale Microscale Thermophys. Eng.
1556-7265, 6
, pp. 209
–222
.19.
Luo
, C. Y.
, Narayanaswamy
, A.
, Chen
, G.
, and Joannopoulos
, J. D.
, 2004, “Thermal Radiation From Photonic Crystals: A Direct Calculation
,” Phys. Rev. Lett.
0031-9007, 93
, p. 213905
.20.
Greffet
, J. -J.
, Carminati
, R.
, Joulain
, K.
, Mulet
, J. -P.
, Henkel
, C.
, Mainguy
, S.
, and Chen
, Y.
, 2003, “Coherent Spontaneous Emission of Light Due to Surface Waves
,” Optical Nanotechnologies: The Manipulation of Surface and Local Plasmons
, 88
, pp. 163
–182
.21.
Carminati
, R.
, and Greffet
, J. J.
, 1999, “Near-Field Effects in Spatial Coherence of Thermal Sources
,” Phys. Rev. Lett.
0031-9007, 82
, pp. 1660
–1663
.22.
Rytov
, S. M.
, Kravtsov
, Y. A.
, and Tatarskii
, V. I.
, 1989, Principles of Statistical Radiophysics
, Springer-Verlag
, Berlin
.23.
Taflove
, A.
, and Hagness
, S. C.
, 2005, Computational Electrodynamics: The Finite-Difference Time-Domain Method
, Artech
, Norwood
.24.
Badieirostami
, M.
, Adibi
, A.
, Zhou
, H. M.
, and Chow
, S. N.
, 2007, “Model for Efficient Simulation of Spatially Incoherent Right Using the Wiener Chaos Expansion Method
,” Opt. Lett.
0146-9592, 32
, pp. 3188
–3190
.25.
Hanamura
, K.
, and Kameya
, Y.
, 2008, “Spectral Control of Thermal Radiation Using Rectangular Micro-Cavities on Emitter-Surface for Thermophotovoltaic Generation of Electricity
,” J. Therm. Sci. Technol.
1880-5566, 3
, pp. 33
–44
.26.
Hou
, T. Y.
, Luo
, W.
, Rozovskii
, B.
, and Zhou
, H. M.
, 2006, “Wiener Chaos Expansions and Numerical Solutions of Randomly Forced Equations of Fluid Mechanics
,” J. Comput. Phys.
0021-9991, 216
, pp. 687
–706
.27.
Lototsky
, S. V.
, and Rozovskii
, B. L.
, 2006, “Wiener Chaos Solutions of Linear Stochastic Evolution Equations
,” Ann. Probab.
0091-1798, 34
, pp. 638
–662
.28.
Jackson
, J. D.
, 1998, Classical Electrodynamics
, Wiley
, New York
.29.
Margengo
, E. A.
, Rappaport
, C. M.
, and Miller
, E. L.
, 1999, “Optimum PML ABC Conductivity Profile in FDFD
,” IEEE Trans. Magn.
0018-9464, 35
, pp. 1506
–1509
.30.
Rappaport
, C. M.
, and McCartin
, B. J.
, 1991, “FDFD Analysis of Electromagnetic Scattering in Anisotropic Media Using Unconstrained Triangular Meshes
,” IEEE Trans. Antennas Propag.
0018-926X, 39
, pp. 345
–349
.31.
Xu
, F.
, and Wu
, K.
, 2009, “A Compact 2-D Finite-Difference Frequency-Domain Method Combined With Implicitly Restarted Arnoldi Technique
,” IEEE Trans. Microwave Theory Tech.
0018-9480, 57
, pp. 1129
–1135
.32.
Xu
, F.
, Zhang
, Y. L.
, Hong
, W.
, Wu
, K.
, and Cui
, T. J.
, 2003, “Finite-Difference Frequency-Domain Algorithm for Modeling Guided-Wave Properties of Substrate Integrated Waveguide
,” IEEE Trans. Microwave Theory Tech.
0018-9480, 51
, pp. 2221
–2227
.33.
Sipe
, J. E.
, 1987, “New Green-Function Formalism for Surface Optics
,” J. Opt. Soc. Am. B
0740-3224, 4
, pp. 481
–489
.34.
Saad
, Y.
, 2003, Iterative Methods for Sparse Linear Systems
, Society for Industrial and Applied Mathematics
, Philadelphia
.35.
Chapuis
, P. O.
, Volz
, S.
, Henkel
, C.
, Joulain
, K.
, and Greffet
, J. J.
, 2008, “Effects of Spatial Dispersion in Near-Field Radiative Heat Transfer Between Two Parallel Metallic Surfaces
,” Phys. Rev. B
0163-1829, 77
, p. 035431
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.