A methodology is proposed, which is capable of determining the near field thermal radiation based on the Wiener chaos expansion. The approach has no explicit constraints on the geometry and temperature distributions of the system and can be easily included with classical electrodynamics simulations. A specific application is made for the near field thermal radiation between two plates and the results are in very good agreement with the classical solutions obtained from Green’s function method. Also, by comparing the resulting solutions with the solutions from Green’s function method, a new point of view for interpreting the results for the near field thermal radiation in terms of a chaos expansion is provided.

1.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
, 2008, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
0163-1829,
78
, p.
115303
.
2.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X. Y.
, and
Chen
,
G.
, 2008, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
133106
.
3.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2008, “
Thermal Near-Field Radiative Transfer Between Two Spheres
,”
Phys. Rev. B
0163-1829,
77
, pp.
075125
.
4.
Francoeur
,
M.
, and
Menguc
,
M. P.
, 2008, “
Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
280
293
.
5.
Francoeur
,
M.
,
Menguc
,
M. P.
, and
Vaillon
,
R.
, 2008, “
Near-Field Radiative Heat Transfer Enhancement via Surface Phonon Polaritons Coupling in Thin Films
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
043109
.
6.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2008, “
Lateral Shifts in Near-Field Thermal Radiation With Surface Phonon Polaritons
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
12
, pp.
238
250
.
7.
Domingues
,
G.
,
Volz
,
S.
,
Joulain
,
K.
, and
Greffet
,
J. J.
, 2005, “
Heat Transfer Between Two Nanoparticles Through Near Field Interaction
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
085901
.
8.
Yannopapas
,
V.
, and
Vitanov
,
N. V.
, 2007, “
Fluctuational Electrodynamics in the Presence of Finite Thermal Sources
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
053901
.
9.
Modest
,
M.
, 2003,
Radiative Heat Transfer
,
Academic
,
San Diego
.
10.
Siegel
,
R.
, and
Howell
,
J.
, 2001,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
New York
.
11.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
, 2008, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
305
316
.
12.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
, 2007, “
Radiative Heat Transfer and Noncontact Friction Between Nanostructures
,”
Phys. Usp.
1063-7869,
50
, pp.
879
906
.
13.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
, 2001, “
Radiative Heat Transfer and Vacuum Friction Between Nanostructures
,”
Phys. Low-Dimens. Semicond. Struct.
,
5–6
, pp.
151
172
.
14.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
, 2001, “
Radiative Heat Transfer Between Nanostructures
,”
Phys. Rev. B
0163-1829,
63
, p.
205404
.
15.
Lee
,
B. J.
,
Park
,
K.
, and
Zhang
,
Z. M.
, 2007, “
Energy Pathways in Nanoscale Thermal Radiation
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
153101
.
16.
Chapuis
,
P. O.
,
Laroche
,
M.
,
Volz
,
S.
, and
Greffet
,
J. J.
, 2008, “
Radiative Heat Transfer Between Metallic Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
201906
.
17.
Pendry
,
J. B.
, 1999, “
Radiative Exchange of Heat Between Nanostructures
,”
J. Phys.: Condens. Matter
0953-8984,
11
, pp.
6621
6633
.
18.
Mulet
,
J. P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2002, “
Enhanced Radiative Heat Transfer at Nanometric Distances
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
6
, pp.
209
222
.
19.
Luo
,
C. Y.
,
Narayanaswamy
,
A.
,
Chen
,
G.
, and
Joannopoulos
,
J. D.
, 2004, “
Thermal Radiation From Photonic Crystals: A Direct Calculation
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
213905
.
20.
Greffet
,
J. -J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J. -P.
,
Henkel
,
C.
,
Mainguy
,
S.
, and
Chen
,
Y.
, 2003, “
Coherent Spontaneous Emission of Light Due to Surface Waves
,”
Optical Nanotechnologies: The Manipulation of Surface and Local Plasmons
,
88
, pp.
163
182
.
21.
Carminati
,
R.
, and
Greffet
,
J. J.
, 1999, “
Near-Field Effects in Spatial Coherence of Thermal Sources
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
1660
1663
.
22.
Rytov
,
S. M.
,
Kravtsov
,
Y. A.
, and
Tatarskii
,
V. I.
, 1989,
Principles of Statistical Radiophysics
,
Springer-Verlag
,
Berlin
.
23.
Taflove
,
A.
, and
Hagness
,
S. C.
, 2005,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
,
Artech
,
Norwood
.
24.
Badieirostami
,
M.
,
Adibi
,
A.
,
Zhou
,
H. M.
, and
Chow
,
S. N.
, 2007, “
Model for Efficient Simulation of Spatially Incoherent Right Using the Wiener Chaos Expansion Method
,”
Opt. Lett.
0146-9592,
32
, pp.
3188
3190
.
25.
Hanamura
,
K.
, and
Kameya
,
Y.
, 2008, “
Spectral Control of Thermal Radiation Using Rectangular Micro-Cavities on Emitter-Surface for Thermophotovoltaic Generation of Electricity
,”
J. Therm. Sci. Technol.
1880-5566,
3
, pp.
33
44
.
26.
Hou
,
T. Y.
,
Luo
,
W.
,
Rozovskii
,
B.
, and
Zhou
,
H. M.
, 2006, “
Wiener Chaos Expansions and Numerical Solutions of Randomly Forced Equations of Fluid Mechanics
,”
J. Comput. Phys.
0021-9991,
216
, pp.
687
706
.
27.
Lototsky
,
S. V.
, and
Rozovskii
,
B. L.
, 2006, “
Wiener Chaos Solutions of Linear Stochastic Evolution Equations
,”
Ann. Probab.
0091-1798,
34
, pp.
638
662
.
28.
Jackson
,
J. D.
, 1998,
Classical Electrodynamics
,
Wiley
,
New York
.
29.
Margengo
,
E. A.
,
Rappaport
,
C. M.
, and
Miller
,
E. L.
, 1999, “
Optimum PML ABC Conductivity Profile in FDFD
,”
IEEE Trans. Magn.
0018-9464,
35
, pp.
1506
1509
.
30.
Rappaport
,
C. M.
, and
McCartin
,
B. J.
, 1991, “
FDFD Analysis of Electromagnetic Scattering in Anisotropic Media Using Unconstrained Triangular Meshes
,”
IEEE Trans. Antennas Propag.
0018-926X,
39
, pp.
345
349
.
31.
Xu
,
F.
, and
Wu
,
K.
, 2009, “
A Compact 2-D Finite-Difference Frequency-Domain Method Combined With Implicitly Restarted Arnoldi Technique
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
57
, pp.
1129
1135
.
32.
Xu
,
F.
,
Zhang
,
Y. L.
,
Hong
,
W.
,
Wu
,
K.
, and
Cui
,
T. J.
, 2003, “
Finite-Difference Frequency-Domain Algorithm for Modeling Guided-Wave Properties of Substrate Integrated Waveguide
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
51
, pp.
2221
2227
.
33.
Sipe
,
J. E.
, 1987, “
New Green-Function Formalism for Surface Optics
,”
J. Opt. Soc. Am. B
0740-3224,
4
, pp.
481
489
.
34.
Saad
,
Y.
, 2003,
Iterative Methods for Sparse Linear Systems
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
35.
Chapuis
,
P. O.
,
Volz
,
S.
,
Henkel
,
C.
,
Joulain
,
K.
, and
Greffet
,
J. J.
, 2008, “
Effects of Spatial Dispersion in Near-Field Radiative Heat Transfer Between Two Parallel Metallic Surfaces
,”
Phys. Rev. B
0163-1829,
77
, p.
035431
.
You do not currently have access to this content.