Experiments are performed to investigate saturation boiling of degassed PF-5060 dielectric liquid on microporous copper dendrite surface layers deposited on 10×10mm2 Cu substrates. The electrochemically deposited surface layers are of different thicknesses (145.6μm, 46.3μm, and 33.1μm). The thickest layer gives the best results: the saturation CHF of 25.27W/cm2 occurs at a surface superheat of only 2.9 K and the maximum nucleate boiling heat transfer coefficient, hMNB, near the end of the fully developed nucleate boiling region, is 8.76W/cm2K. In addition, nucleate boiling ensues at a surface temperature slightly above saturation (<0.5K), with no temperature excursion. The temperature excursions before initiating boiling on the 46.3μm and 33.1μm thick Cu nanodendrite surface layers are small (3.7 K and 6 K), corresponding to surface temperatures of 55.1°C and 57.4°C, respectively. These temperatures are much lower than recommended (85°C) for reliable operation of most silicon electronics and central processor units.

1.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
, 2007, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
5–6
), pp.
997
1009
.
2.
Yu
,
C. K.
, and
Lu
,
D. C.
, 2007, “
Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3624
3637
.
3.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2008, “
Nucleate Boiling of FC-72 and HFE-7100 on Porous Graphite at Different Orientations and Liquid Subcooling
,”
Energy Convers. Manage.
0196-8904,
49
(
4
), pp.
733
750
.
4.
Furberg
,
R.
,
Li
,
S.
,
Palm
,
B.
,
Toprak
,
M.
, and
Muhammed
,
M.
, 2006, “
Dendritically Ordered Nano-Particles in a Micro-Porous Structure for Enhanced Boiling
,”
Proceedings of the 13th International Heat Transfer Conference
, Sydney, Australia, Paper No. NAN-07.
5.
Kim
,
J. H.
,
Kashinath
,
M. R.
,
Kwark
,
S. M.
, and
You
,
S. M.
, 2007, “
Optimization of Microporous Structures in Enhanced Pool Boiling Heat Transfer of Saturated R-123, FC-72, and Water
,”
ASME
Paper No. HT2007-32339.
6.
Li
,
S.
,
Furberg
,
R.
,
Toprak
,
M. S.
,
Palm
,
B.
, and
Muhammed
,
M.
, 2008, “
Nature-Inspired Boiling Enhancement by Novel Nanostructure Macroporous Surfaces
,”
Adv. Funct. Mater.
1616-301X,
18
, pp.
2215
2220
.
7.
Nimkar
,
N. K.
,
Bhavnani
,
S. H.
, and
Jaeger
,
R. C.
, 2006, “
Benchmark Heat Transfer Date for Microstructured Surfaces for Immersion-Cooled Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
1
), pp.
89
97
.
8.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2005, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3736
3752
.
9.
Rainey
,
K. N.
, and
You
,
S. M.
, 2000, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
509
516
.
10.
Shin
,
H. C.
,
Dong
,
J.
, and
Liu
,
M.
, 2003, “
Nanoporous Structure Prepared by an Electrochemical Deposition Processes
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
15
(
19
), pp.
1610
1614
.
11.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2005, “
Pool Boiling of Saturated FC-72 on Nano-Porous Surface
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
27
31
.
12.
Yu
,
C. K.
,
Lu
,
D. C.
, and
Cheng
,
T. C.
, 2006, “
Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72
,”
J. Micromech. Microeng.
0960-1317,
16
(
10
), pp.
2092
2099
.
13.
El-Genk
,
M. S.
, and
Bostanci
,
H.
, 2003, “
Saturation Boiling of HFE-7100 From a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1841
1854
.
14.
Chang
,
J.
,
You
,
S. M.
, and
Haji-Sheikh
,
A.
, 1998, “
Film Boiling Incipience at the Departure From Natural Convection on Flat, Smooth Surfaces
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
402
409
.
15.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2006, “
Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1159
1175
.
16.
Webb
,
R. L.
, 2004, “
Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1051
1059
.
17.
Jung
,
J. -Y.
, and
Kwak
,
H. -Y.
, 2006, “
Effect of Surface Condition on Boiling Heat Transfer From Silicon Chip With Submicron-Scale Roughness
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
23–24
), pp.
4543
4551
.
18.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Gao
,
A.
, and
Ajayan
,
P. M.
, 2006, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
0026-2692,
37
, pp.
1158
1164
.
19.
Albertson
,
C. E.
, 1977, “
Boiling Heat Transfer Surface and Method
,” U.S. Patent No. 4,018,264.
20.
Shin
,
H. -C.
, and
Liu
,
M.
, 2004, “
Copper Foam Structures With Highly Porous Nanostructured Walls
,”
Chem. Mater.
0897-4756,
16
, pp.
5460
5464
.
21.
Furberg
,
R.
, 2006, “
Enhanced Boiling Heat Transfer From a Novel Nanodentritic Microporous Copper Structure
,” Ph.D. thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden.
22.
Kim
,
J. H.
, 2006,
Enhancement of Pool Boiling Heat Transfer Using Thermally-Conductive Microporous Coating Techniques
, Ph.D. thesis, UT, Arlington, TX.
23.
Bliss
,
F. E.
, Jr.
,
Hsu
,
S. T.
, and
Crawford
,
M.
, 1969, “
An Investigation Into the Effects of Various Plating’s on the Film Coefficient During Nucleate Boiling From Horizontal Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
1061
1072
.
24.
Kline
,
S. J.
, 1985, “
The Purposes of Uncertainty Analysis
,”
ASME Trans. J. Fluids Eng.
0098-2202,
107
,
153
160
.
25.
Wei
,
J. J.
, and
Honda
,
H.
, 2003, “
Effect of Fin Geometry on Boiling Heat Transfer From Silicon Chips With Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4059
4070
.
You do not currently have access to this content.