We show that a large set of nanofluid thermal conductivity data falls within the upper and lower Maxwell bounds for homogeneous systems. This indicates that the thermal conductivity of nanofluids is largely dependent on whether the nanoparticles stay dispersed in the base fluid, form large aggregates, or assume a percolating fractal configuration. The experimental data, which are strikingly analogous to those in most solid composites and liquid mixtures, provide strong evidence for the classical nature of thermal conduction in nanofluids.

1.
Weitz
,
D. A.
,
Huang
,
J. S.
,
Lin
,
M. Y.
, and
Sung
,
J.
, 1984, “
Dynamics of Diffusion-Limited Kinetic Aggregation
,”
Phys. Rev. Lett.
0031-9007,
53
, pp.
1657
1660
.
2.
Weitz
,
D. A.
,
Huang
,
J. S.
,
Lin
,
M. Y.
, and
Sung
,
J.
, 1985, “
Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids
,”
Phys. Rev. Lett.
0031-9007,
54
, pp.
1416
1419
.
3.
Weitz
,
D. A.
, and
Oliveria
,
M.
, 1984, “
Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids
,”
Phys. Rev. Lett.
0031-9007,
52
, pp.
1433
1436
.
4.
Meakin
,
P.
, 1992, “
Aggregation Kinetics
,”
Phys. Scr.
0031-8949,
46
, pp.
295
331
.
5.
Fertman
,
V. E.
, 1987, “
Thermal and Physical Properties of Magnetic Fluids
,”
J. Eng. Phys. Thermophys.
1062-0125,
53
, pp.
1097
1105
.
6.
Fertman
,
V. E.
,
Golovicher
,
L. E.
, and
Matusevich
,
N. P.
, 1987, “
Thermal Conductivity of Magnetite Magnetic Fluids
,”
J. Magn. Magn. Mater.
0304-8853,
65
, pp.
211
214
.
7.
Popplewell
,
J.
,
Al-Qenaie
,
A.
,
Charles
,
S. W.
,
Moskowitz
,
R.
, and
Raj
,
K.
, 1982, “
Thermal Conductivity Measurements on Ferrofluids
,”
Colloid Polym. Sci.
0303-402X,
260
, pp.
333
338
.
8.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X,
7
, pp.
227
233
.
9.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
457
, pp.
3
11
.
10.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
11.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2931
2933
.
12.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
474
480
.
13.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
14.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
15.
Rusconi
,
R.
,
Rodari
,
E.
, and
Piazza
,
R.
, 2006, “
Optical Measurements of the Thermal Properties of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
261916
.
16.
Venerus
,
D. C.
,
Kabadi
,
M. S.
,
Lee
,
S.
, and
Perez-Luna
,
V.
, 2006, “
Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering
,”
J. Appl. Phys.
0021-8979,
100
, p.
094310
.
17.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
J. Appl. Phys.
0021-8979,
100
, p.
044325
.
18.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids
,”
Int. J. Thermophys.
0195-928X,
27
, pp.
569
580
.
19.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
, 2002, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
0195-928X,
23
, pp.
571
580
.
20.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, p.
084308
.
21.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
, pp.
36
44
.
22.
Singh
,
D.
,
Timofeeva
,
E.
,
Yu
,
W.
,
Routbort
,
J.
,
France
,
D.
,
Smith
,
D.
, and
Lopez-Cepero
,
J. M.
, 2009, “
An Investigation of Silicon Carbide-Water Nanofluid for Heat Transfer Applications
,”
J. Appl. Phys.
0021-8979,
105
, p.
064306
.
23.
Ju
,
Y. S.
,
Kim
,
J.
, and
Hung
,
M. -T.
, 2008, “
Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
092403
.
24.
Timofeeva
,
E. V.
,
Gavrilov
,
A. N.
,
McCloskey
,
J. M.
,
Tolmachev
,
Y. V.
,
Sprunt
,
S.
,
Lopatina
,
L. M.
, and
Selinger
,
J. V.
, 2007, “
Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory
,”
Phys. Rev. E
1063-651X,
76
, p.
061203
.
25.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
153107
.
26.
Hong
,
T. K.
,
Yang
,
H. S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
, p.
064311
.
27.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
, 2006, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
0891-6152,
19
, pp.
181
191
.
28.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2005, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
367
373
.
29.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2006, “
Determination of the Effective Thermal Diffusivity of Nanofluids by the Double Hot-Wire Technique
,”
J. Phys. D
0022-3727,
39
, pp.
5316
5322
.
30.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, 2006, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
Scr. Mater.
1359-6462,
55
, pp.
549
552
.
31.
Chopkar
,
M.
,
Kumar
,
S.
,
Bhandari
,
D. R.
,
Das
,
P. K.
, and
Manna
,
I.
, 2007, “
Development and Characterization of Al2Cu and Ag2Al Nanoparticle Dispersed Water and Ethylene Glycol Based Nanofluid
,”
Mater. Sci. Eng., B
0921-5107,
139
, pp.
141
148
.
32.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2007, “
The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids
,”
J. Appl. Phys.
0021-8979,
101
, p.
044312
.
33.
Zhu
,
H. T.
,
Zhang
,
C. Y.
,
Tang
,
Y. M.
, and
Wang
,
J. X.
, 2007, “
Novel Synthesis and Thermal Conductivity of CuO Nanofluid
,”
J. Phys. Chem. C
1932-7447,
111
, pp.
1646
1650
.
34.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
, 2006, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, pp.
023123
.
35.
Li
,
Q.
, and
Xuan
,
Y.
, 2006, “
Enhanced Heat Transfer Behaviors of New Heat Carrier for Spacecraft Thermal Management
,”
J. Spacecr. Rockets
0022-4650,
43
, pp.
687
689
.
36.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
, p.
084314
.
37.
Yoo
,
D. -H.
,
Hong
,
K. S.
, and
Yang
,
H. -S.
, 2007,“
Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids
,”
Thermochim. Acta
0040-6031,
455
, pp.
66
69
.
38.
Vázquez Peñas
,
J. R.
,
Ortiz de Zárate
,
J. M.
, and
Khayet
,
M.
, 2008, “
Measurement of the Thermal Conductivity of Nanofluids by the Multicurrent Hot-Wire Method
,”
J. Appl. Phys.
0021-8979,
104
, p.
044314
.
39.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, 2008, “
Nanofluid With Tunable Thermal Properties
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
043108
.
40.
Schmidt
,
A. J.
,
Chiesa
,
M.
,
Torchinsky
,
D. H.
,
Johnson
,
J. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
, 2008, “
Thermal Conductivity of Nanoparticle Suspensions in Insulating Media Measured With a Transient Optical Grating and a Hotwire
,”
J. Appl. Phys.
0021-8979,
103
, p.
083529
.
41.
Sinha
,
K.
,
Kavlicoglu
,
B.
,
Liu
,
Y.
,
Gordaninejad
,
F.
, and
Graeve
,
O. A.
, 2009, “
A Comparative Study of Thermal Behavior of Iron and Copper Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
064307
.
42.
Shima
,
P. D.
,
Philip
,
J.
, and
Raj
,
B.
, 2009, “
Role of Microconvection Induced by Brownian Motion of Nanoparticles in the Enhanced Thermal Conductivity of Stable Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
223101
.
43.
Gharagozloo
,
P. E.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
, 2008, “
Diffusion, Aggregation, and the Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
103110
.
44.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
, 2008, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
0021-8979,
103
, p.
074301
.
45.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, 2007, “
Enhancement of Thermal Conductivity in Magnetite Based Nanofluid due to Chainlike Structures
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
203108
.
46.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
094312
.
47.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
, Vol.
1
, 2nd ed.,
Claredon
,
Oxford
.
48.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
0021-8979,
33
, pp.
3125
3131
.
49.
Nan
,
C. -W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6692
6699
.
50.
Benveniste
,
Y.
, 1987, “
Effective Thermal Conductivity of Composites With a Thermal Contact Resistance Between the Constituents: Nondilute Case
,”
J. Appl. Phys.
0021-8979,
61
, pp.
2840
.
51.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
, 2007, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
298
307
.
52.
Hong
,
K. S.
,
Hong
,
T. -K.
, and
Yang
,
H. -S.
, 2006, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
031901
.
53.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L. -W.
, and
Peterson
,
G. P.
, 2008, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042407
.
54.
Jha
,
N.
, and
Ramaprabhu
,
S.
, 2009, “
Thermal Conductivity Studies of Metal Dispersed Multiwalled Carbon Nanotubes in Water and Ethylene Glycol Based Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
084317
.
55.
Every
,
A. G.
,
Tzou
,
Y.
,
Hasselman
,
D. P. H.
, and
Raj
,
R.
, 1992, “
The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
123
129
.
56.
Sofian
,
N. M.
,
Rusu
,
M.
,
Neagu
,
R.
, and
Neagu
,
E.
, 2001, “
Metal Powder-Filled Polyethylene Composites. V. Thermal Properties
,”
J. Thermoplastic Composite Materials
,
14
, pp.
20
33
.
57.
Hasselman
,
D. P. H.
, and
Donaldson
,
K. Y.
, 2000, “
Role of Size in the Effective Thermal Conductivity of Composites With an Interfacial Thermal Barrier
,”
J. Wide Bandgap Mater.
1524-511X,
7
, pp.
306
318
.
58.
Geiger
,
A. L.
,
Hasselman
,
D. P. H.
, and
Donaldson
,
K. Y.
, 1993, “
Effect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate Silicon-Carbide Reinforced Aluminum-Matrix Composite
,”
J. Mater. Sci. Lett.
0261-8028,
12
, pp.
420
423
.
59.
Pal
,
R.
, 2007, “
New Models for Thermal Conductivity of Particulate Composites
,”
J. Reinf. Plast. Compos.
0731-6844,
26
, pp.
643
651
.
60.
Zhang
,
H.
,
Ge
,
X.
, and
Ye
,
H.
, 2005, “
Effectiveness of the Heat Conduction Reinforcement of Particle Filled Composites
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
401
412
.
61.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
144301
.
62.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2004, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
, pp.
6492
6494
.
63.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
577
588
.
64.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
65.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
66.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
67.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
68.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2007, “
Mixing Effect on the Enhancement of the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4668
4677
.
69.
Patel
,
H. E.
,
Sundararajan
,
T.
,
Pradeep
,
T.
,
Dasgupta
,
A.
,
Dasgupta
,
N.
, and
Das
,
S. K.
, 2005, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids
,”
Pramana, J. Phys.
0304-4289,
65
, pp.
863
869
.
70.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
71.
Xue
,
Q. -Z.
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
0375-9601,
307
, pp.
313
317
.
72.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
, 2005, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2926
2932
.
73.
Xue
,
Q.
, and
Xu
,
W. -M.
, 2005, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
0254-0584,
90
, pp.
298
301
.
74.
Tillman
,
P.
, and
Hill
,
J. M.
, 2007, “
Determination of Nanolayer Thickness for a Nanofluid
,”
Int. Commun. Heat Mass Transfer
0735-1933,
34
, pp.
399
407
.
75.
Avsec
,
J.
, and
Oblak
,
M.
, 2007, “
The Calculation of Thermal Conductivity, Viscosity and Thermodynamic Properties for Nanofluids on the Basis of Statistical Nanomechanics
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4331
4341
.
76.
Gao
,
L.
, and
Zhou
,
X. F.
, 2006, “
Differential Effective Medium Theory for Thermal Conductivity in Nanofluids
,”
Phys. Lett. A
0375-9601,
348
, pp.
355
360
.
77.
Zhou
,
X. F.
, and
Gao
,
L.
, 2006, “
Effective Thermal Conductivity in Nanofluids of Nonsperical Particles With Interfacial Thermal Resistance: Differential Effective Medium Theory
,”
J. Appl. Phys.
0021-8979,
100
, p.
024913
.
78.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2006, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
143119
.
79.
Jie
,
X.
,
Yu
,
B. -M.
, and
Yun
,
M. -J.
, 2006, “
Effect of Clusters on Thermal Conductivity in Nanofluids
,”
Chin. Phys. Lett.
0256-307X,
23
, pp.
2819
2822
.
80.
Feng
,
Y.
,
Yu
,
B.
,
Xu
,
P.
, and
Zou
,
M.
, 2007, “
The Effective Thermal Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanopartciles
,”
J. Phys. D: Appl. Phys.
0022-3727,
40
, pp.
3164
3171
.
81.
Xu
,
J.
,
Yu
,
B.
,
Zou
,
M.
, and
Xu
,
P.
, 2006, “
A New Model for Heat Conduction of Nanofluids Based on Fractal Distributions of Nanoparticles
,”
J. Phys. D
0022-3727,
39
, pp.
4486
4490
.
82.
Ren
,
Y.
,
Xie
,
H.
, and
Cai
,
A.
, 2005, “
Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles
,”
J. Phys. D
0022-3727,
38
, pp.
3958
3961
.
83.
Wang
,
B. -X.
,
Zhou
,
L. -P.
, and
Peng
,
Z. -F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
84.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
, 2004, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
, pp.
1038
1043
.
85.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
1530-6984,
6
, pp.
1529
1534
.
86.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
, 2008, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
1388-0764,
10
, pp.
1089
1097
.
87.
deGroot
,
S. R.
, and
Mazur
,
P.
, 1984,
Nonequilibrium Thermodynamics
,
Dover
,
New York
.
88.
DeVera
,
A. L.
, and
Strieder
,
W.
, 1977, “
Upper and Lower Bounds on the Thermal Conductivity of a Random, Two-Phase Material
,”
J. Phys. Chem.
0022-3654,
81
, pp.
1783
.
89.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
, 2005, “
Thermal Conductivity Bounds for Isotropic Porous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2150
2158
.
90.
Griesinger
,
A.
,
Hurler
,
W.
, and
Pietralla
,
M.
, 1997, “
A Photothermal Method With Step Heating for Measuring the Thermal Diffusivity of Anisotropic Solids
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3049
3058
.
91.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L. -W.
,
Yip
,
S.
,
Rusconi
,
R.
, and
Piazza
,
R.
, 2007, “
Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
095901
.
92.
Torquato
,
S.
, and
Rintoul
,
M. D.
, 1995, “
Effect of Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
0031-9007,
75
, pp.
4067
4070
.
93.
Raghavan
,
K.
,
Foster
,
K.
,
Motakabbir
,
K.
, and
Berkowitz
,
M.
, 1991, “
Structure and Dynamics of Water at the Pt(111) Interface: Molecular Dynamics Study
,”
J. Chem. Phys.
0021-9606,
94
, pp.
2110
2117
.
94.
Reedijk
,
M. F.
,
Arsic
,
J.
,
Hollander
,
F. F. A.
,
de Vries
,
S. A.
, and
Vlieg
,
E.
, 2003, “
Liquid Order at the Interface of KDP Crystals With Water: Evidence for Icelike Layers
,”
Phys. Rev. Lett.
0031-9007,
90
, p.
066103
.
95.
Mo
,
H.
,
Evmenenko
,
G.
, and
Dutta
,
P.
, 2005, “
Ordering of Liquid Squalane Near a Solid Surface
,”
Chem. Phys. Lett.
0009-2614,
415
, pp.
106
109
.
96.
Yu
,
C. -J.
,
Richter
,
A. G.
,
Kmetko
,
J.
,
Dugan
,
S. W.
,
Datta
,
A.
, and
Dutta
,
P.
, 2001, “
Structure of Interfacial Liquids: X-Ray Scattering Studies
,”
Phys. Rev. E
1063-651X,
63
, p.
021205
.
97.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Beyond the Maxwell Limit: Thermal Conduction in Nanofluids With Percolating Fluid Structures
,”
Phys. Rev. E
1063-651X,
76
, p.
062501
.
98.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
99.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
, 2007, “
Thermal Conductivity of Ordered Molecular Water
,”
J. Chem. Phys.
0021-9606,
126
, p.
154504
.
100.
Mo
,
H.
,
Evmenenko
,
G.
,
Kewalramani
,
S.
,
Kim
,
K.
,
Ehrlich
,
S. N.
, and
Dutta
,
P.
, 2006, “
Observation of Surface Layering in a Nonmetallic Liquid
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
096107
.
101.
Wang
,
X. -Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
1
19
.
102.
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2005, “
Comment on “Model for Heat Conduction in Nanofluids”
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
209401
.
103.
Bastea
,
S.
, 2005, “
Comment on “Model for Heat Conduction in Nanofluids”
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
019401
.
104.
He
,
P.
, and
Qiao
,
R.
, 2008, “
Self-Consistent Fluctuating Hydrodynamics Simulations of Thermal Transport in Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
103
, p.
094305
.
105.
Morozov
,
K. I.
, 2002,
On the Theory of the Soret Effect in Colloids
,
W.
Köhler
and
S.
Wiegand
, eds.,
Springer-Verlag
,
Berlin
.
106.
Piazza
,
R.
, 2004, “
‘Thermal Forces’: Colloids in Temperature Gradients
,”
J. Phys.: Condens. Matter
0953-8984,
16
, pp.
S4195
S4211
.
107.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
108.
Nie
,
C.
,
Marlow
,
W. H.
, and
Hassan
,
Y. A.
, 2008, “
Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1342
1348
.
109.
Hass
,
K. C.
,
Schneider
,
W. F.
,
Curioni
,
A.
, and
Andreoni
,
W.
, 1998, “
The Chemistry of Water on Alumina Surfaces: Reaction Dynamics From First Principles,”
,”
Science
0036-8075,
282
, pp.
265
268
.
110.
Gmachowski
,
L.
, 2002, “
Aggregate Restructuring and Its Effect on the Aggregate Size Distribution
,”
Colloids Surf., A
0927-7757,
207
, pp.
271
277
.
111.
Kim
,
J.
, and
Kramer
,
T. A.
, 2006, “
Improved Orthokinetic Coagulation Model for Fractal Colloids: Aggregation and Breakup
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
45
53
.
112.
Wiltzius
,
P.
, 1987, “
Hydrodynamic Behavior of Fractal Aggregates
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
710
713
.
113.
Hess
,
W.
,
Frisch
,
H. L.
, and
Klein
,
R.
, 1986, “
On the Hydrodynamic Behavior of Colloidal Aggregates
,”
Z. Phys. B: Condens. Matter
0722-3277,
64
, pp.
65
67
.
114.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
115.
Goldhirsch
,
I.
, and
Ronis
,
D.
, 1983, “
Theory of Thermophoresis. I. General Considerations and Mode-Coupling Analysis
,”
Phys. Rev. A
1050-2947,
27
, pp.
1616
1634
.
116.
Lin
,
F.
,
Bhatia
,
G. S.
, and
Ford
,
J. D.
, 1993, “
Thermal Conductivities of Powder-Filled Epoxy Resins
,”
J. Appl. Polym. Sci.
0021-8995,
49
, pp.
1901
1908
.
117.
Boudenne
,
A.
,
Ibos
,
L.
,
Fois
,
M.
,
Gehin
,
E.
, and
Majeste
,
J. -C.
, 2004, “
Thermophysical Properties of Polypropylene/Aluminum Composites
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
42
, pp.
722
732
.
118.
Tekce
,
H. S.
,
Kumlutas
,
D.
, and
Tavman
,
I. H.
, 2007, “
Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites
,”
J. Reinf. Plast. Compos.
0731-6844,
26
, pp.
113
121
.
119.
Xu
,
Y.
,
Chung
,
D. D. L.
, and
Mroz
,
C.
, 2001, “
Thermally Conducting Aluminum Nitride Polymer-Matrix Composites
,”
Composites, Part A
1359-835X,
32
, pp.
1749
1757
.
120.
Agari
,
Y.
, and
Uno
,
T.
, 1986, “
Estimation of Thermal Conductivities of Filled Polymers
,”
J. Appl. Polym. Sci.
0021-8995,
32
, pp.
5705
5712
.
121.
Cowling
,
T. G.
,
Gray
,
P.
, and
Wright
,
P. G.
, 1963, “
The Physical Significance of Formulae for the Thermal Conductivity and Viscosity of Gaseous Mixtures
,”
Proc. R. Soc. London, Ser. A
0950-1207,
276
, pp.
69
82
.
122.
Pandey
,
J. D.
, and
Mishra
,
R. K.
, 2005, “
Theoretical Evaluation of Thermal Conductivity and Diffusion Coefficient of Binary Liquid Mixtures
,”
Phys. Chem. Liq.
0031-9104,
43
, pp.
49
57
.
123.
Assael
,
M. J.
,
Charitidou
,
E.
, and
Wakeham
,
W. A.
, 1989, “
Absolute Measurements of the Thermal Conductivity of Mixtures of Alcohols With Water
,”
Int. J. Thermophys.
0195-928X,
10
, pp.
793
803
.
124.
Li
,
C. C.
, 1976, “
Thermal Conductivity of Liquid Mixtures
,”
AIChE J.
0001-1541,
22
, pp.
927
930
.
125.
Li
,
Q.
,
Xuan
,
Y.
, and
Wang
,
J.
, 2005, “
Experimental Investigations on Transport Properties of Magnetic Fluids
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
109
116
.
126.
Jagannadham
,
K.
, and
Wang
,
H.
, 2002, “
Thermal Resistance of Interfaces in AlN-Diamond Thin Film Composites
,”
J. Appl. Phys.
0021-8979,
91
, pp.
1224
1235
.
127.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2006, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
186101
.
128.
Bryning
,
M. B.
,
Milkie
,
D. E.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
, 2005, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
161909
.
129.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspension
,”
Nature Mater.
1476-1122,
2
, pp.
731
734
.
130.
Nan
,
C. -W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
3549
3551
.
131.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
132.
Wen
,
D.
, and
Ding
,
Y.
, 2006, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
1536-125X,
5
, pp.
220
227
.
133.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
, 2007, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
0021-8979,
101
, p.
064302
.
134.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
135.
Hwang
,
Y.
,
Lee
,
J. K.
,
Lee
,
C. H.
,
Jung
,
Y. M.
,
Cheong
,
S. I.
,
Lee
,
C. G.
,
Ku
,
B. C.
, and
Jang
,
S. P.
, 2007, “
Stability and Thermal Conductivity Characteristics of Nanofluids
,”
Thermochim. Acta
0040-6031,
455
, pp.
70
74
.
136.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids)
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
481
485
.
137.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. -W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042412
.
138.
Williams
,
W. C.
, 2006, “
Experimental and Theoretical Investigations of Transport Phenomena in Nanoparticle Colloids (Nanofluids)
,” Ph.D. thesis, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.
139.
Bertolini
,
D.
, and
Tani
,
A.
, 1997, “
Thermal Conductivity of Water: Molecular Dynamics and Generalized Hydrodynamics Results
,”
Phys. Rev. E
1063-651X,
56
, pp.
4135
4151
.
140.
Li
,
L.
, and
Chung
,
D. D. L.
, 1994, “
Thermally Conducting Polymer-Matrix Composites Containing Both AIN Particles and SIC Whiskers
,”
J. Electron. Mater.
0361-5235,
23
, pp.
557
564
.
141.
National Institute of Standards and Technology (NIST)
, “
Fluid Properties
,” http://webbook.nist.gov/chemistry/fluid/http://webbook.nist.gov/chemistry/fluid/
142.
Rusconi
,
R.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Piazza
,
R.
, and
Hu
,
L. -W.
, 2007, “
Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity
,”
Int. J. Thermophys.
0195-928X,
28
, pp.
1131
1146
.
143.
2007, “
CRC Handbook of Chemistry and Physics
,” http://www.hbcpnetbase.comhttp://www.hbcpnetbase.com
144.
Kwak
,
K.
, and
Kim
,
C.
, 2005, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
1226-119X,
17
, pp.
35
40
.
145.
The A-Z of Materials
,” http://www.azom.comhttp://www.azom.com
146.
Weidenfeller
,
B.
,
Höfer
,
M.
, and
Schilling
,
F.
, 2002, “
Thermal and Electrical Properties of Magnetite Filled Polymers
,”
Composites, Part A
1359-835X,
33
, pp.
1041
1053
.
147.
Bozorth
,
R. M.
, 1978,
Ferromagnetism
,
IEEE
,
New York
.
148.
Yu
,
R. C.
,
Tea
,
N.
,
Salamon
,
M. B.
,
Lorents
,
D.
, and
Malhotra
,
R.
, 1992, “
Thermal Conductivity of Single Crystal C60
,”
Phys. Rev. Lett.
0031-9007,
68
, pp.
2050
2053
.
You do not currently have access to this content.