The paper explores the potential of a recently developed special front tracking method in the identification of the interface between columnar and equiaxed structures formed during a binary alloy solidification, driven by thermosolutal convection. The method, based on theoretical and experimental dendrite tip kinetics, is capable of directly distinguishing between the columnar mush and the undercooled liquid/equiaxed region developing ahead of the dendrite tip curve. A new numerical model and its computational algorithm are proposed, where the classical Eulerian volume averaged description of the transport processes is coupled with the Lagrangian front tracking method on a fixed control-volume grid. Having thus distinguished zones of different dendrite structures, distinct simulation models are used within each of the zones, e.g., the Darcy’s porous medium model in the stationary dendrite region, and a model of slurry with floating dendrites in the equiaxed part of the mush. The calculated temperature and solute concentration fields are compared with the relevant results of the classical enthalpy-porosity model, for an example problem of Pb-48 wt% Sn alloy solidification driven by diffusion and thermosolutal convection. And a good match with both solutions is exhibited. A preliminary validation study is also presented by comparing the available experimental data with the model predictions. Possible reasons for some observed discrepancies between the calculations and the experimental findings are discussed. Finally, the proposed front tracking approach is used to address the question of the impact of dendrites floating in the liquid on the flow pattern and macrosegregation in the solidifying alloy.

1.
Juric
,
D.
, and
Tryggvason
,
G.
, 1996, “
A Front Tracking Method for Dendritic Solidification
,”
J. Comput. Phys.
0021-9991,
123
, pp.
127
148
.
2.
Amberg
,
G.
, 2004, “
“Solidification, Microstructure and Convection,” Courses and Lectures—No. 449
,”
Phase Change With Convection: Modelling and Validation
,
Springer-Verlag
,
Berlin
, pp.
1
54
.
3.
Badillo
,
A.
, and
Beckermann
,
C.
, 2006, “
Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification
,”
Acta Mater.
1359-6454,
54
, pp.
2015
2026
.
4.
Gandin
,
Ch. -A.
,
Desbiolles
,
J.
,
Rappaz
,
M.
, and
Thevoz
,
Ph.
, 1999, “
A Three Dimensional Cellular Automaton Finite Element Model for the Prediction of Solidification Grain Structures
,”
Metall. Mater. Trans. A
1073-5623,
30
, pp.
3153
3165
.
5.
Dong
,
H. B.
, and
Lee
,
P. D.
, 2005, “
Simulation of the Columnar-to-Equiaxed Transition in Directionally Solidified Al–Cu Alloys
,”
Acta Mater.
1359-6454,
53
, pp.
659
668
.
6.
Kurz
,
W.
,
Giovanola
,
B.
, and
Trivedi
,
R.
, 1986, “
Theory of Micro-Structural Development During Rapid Solidification
,”
Acta Metall.
0001-6160,
34
, pp.
823
830
.
7.
Bennon
,
W. D.
, and
Incropera
,
F. P.
, 1987, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2161
2170
.
8.
Prescott
,
P. J.
,
Incropera
,
F. P.
, and
Bennon
,
W. D.
, 1991, “
Modelling of Dendritic Solidification Systems: Reassessment of the Continuum Momentum Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2351
2359
.
9.
Beckermann
,
C.
, and
Viskanta
,
R.
, 1993, “
Mathematical Modelling of Transport Phenomena During Alloy Solidification
,”
Appl. Mech. Rev.
0003-6900,
46
, pp.
1
27
.
10.
Wang
,
C. Y.
, and
Beckermann
,
C.
, 1993, “
A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification
,”
Metall. Trans. A
0360-2133,
24A
, pp.
2787
2802
.
11.
Furmański
,
P.
, 2004, “
Microscopic-Macroscopic Modelling of Transport Phenomena During Solidification in Hetero-Geneous Systems
,”
Courses and Lectures—No. 449 “Phase Change With Convection: Modelling and Validation”
,
Springer-Verlag
,
Berlin
, pp.
55
126
.
12.
Ciobanas
,
A. I.
, and
Fautrelle
,
Y.
, 2007, “
Ensemble Averaged Multiphase Eulerian Model for Columnar/Equiaxed Solidification of Binary Alloy: I. The Mathematical Model
,”
J. Phys. D
0022-3727,
40
, pp.
3733
3762
.
13.
Voller
,
V. R.
,
Brent
,
A. D.
, and
Prakash
,
C.
, 1989, “
The Modelling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1719
1731
.
14.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
, 1997, “
Towards a General Numerical Scheme for Solidification Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2859
2868
.
15.
Christenson
,
M. S.
,
Bennon
,
W. D.
, and
Incropera
,
F. P.
, 1989, “
Solidification of an Aqueous Ammonium Chloride Solution in a Rectangular Cavity—II. Comparison of Predicted and Measured Results
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
69
79
.
16.
Christenson
,
M. S.
, and
Incropera
,
F. P.
, 1989, “
Solidification of an Aqueous Ammonium Chloride Solution in a Rectangular Cavity—I. Experimental Study
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
47
68
.
17.
Roux
,
P.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Fichot
,
F.
, and
Quinard
,
M.
, 2006, “
Chemical Non-Equilibrium Modelling of Columnar Solidification
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4496
4510
.
18.
Arnberg
,
L.
,
Chai
,
G.
, and
Backerund
,
L.
, 1993, “
Determination of Dendritic Coherency in Solidifying Melts by Rheology Measurements
,”
Mater. Sci. Eng., A
0921-5093,
173A
, pp.
101
103
.
19.
Vreeman
,
C. J.
, and
Incropera
,
F. P.
, 1999, “
Numerical Discretization of Species Equation Source Terms in Binary Mixture Models of Solidification and Their Impact on Macro-Segregation in Semicontinuous Direct Chill Castings Systems
,”
Numer. Heat Transfer, Part B
1040-7790,
36B
, pp.
1
14
.
20.
Mat
,
M. D.
, and
Ilegbusi
,
O. J.
, 2002, “
Application of a Hybrid Model of Mushy Zone to Macro-Segregation in Alloy Solidification
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
279
289
.
21.
Browne
,
D. J.
, and
Hunt
,
J. D.
, 2004, “
A Fixed Grid Front-Tracking Model of the Growth of a Columnar Front and an Equiaxed Grain During Solidification of an Alloy
,”
Numer. Heat Transfer, Part B
1040-7790,
45
, pp.
395
419
.
22.
Banaszek
,
J.
, and
Browne
,
D. J.
, 2005, “
Modelling Columnar Dendritic Growth Into an Under-Cooled Metallic Melt in the Presence of Convection
,”
Mater. Trans.
1345-9678,
46
, pp.
1378
1387
.
23.
Banaszek
,
J.
,
McFadden
,
S.
,
Browne
,
D. J.
,
Sturz
,
L.
, and
Zimmermann
,
G.
, 2007, “
Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front Tracking Model of Alloy Solidification
,”
Metall. Mater. Trans. A
1073-5623,
38
, pp.
1476
1484
.
24.
Browne
,
D. J.
, 2005, “
A New Equiaxed Solidification Predictor From a Model of Columnar Growth
,”
ISIJ Int.
0915-1559,
45
(
1
), pp.
37
44
.
25.
Ahmad
,
N.
,
Combeau
,
H.
,
Desbiolles
,
J. -L.
,
Jalanti
,
T.
,
Lesoult
,
G.
,
Rappaz
,
J.
,
Rappaz
,
M.
, and
Stomp
,
C.
, 1998, “
Numerical Simulation of Macro-Segregation: A Comparison Between Finite Volume Method and Finite Element Method Predictions and a Confrontation With Experiments
,”
Metall. Mater. Trans. A
1073-5623,
29
, pp.
617
630
.
26.
Hebditch
,
D. J.
, and
Hunt
,
J. D.
, 1974, “
Observations of Ingot Macro-Segregation on Model Systems
,”
Metall. Trans.
0026-086X,
5
, pp.
1557
1564
.
27.
Ni
,
J.
, and
Incropera
,
F. P.
, 1995, “
Extension of the Continuum Model for Transport Phenomena Occurring During Metal Alloy Solidification—I. The Conservation Equations
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1271
1284
.
28.
Vreeman
,
C. J.
,
Krane
,
M. J. M.
, and
Incropera
,
F. P.
, 2000, “
The Effect of Free-Floating Dendrites and Convection on Macro-Segregation in Direct Chill Cast Aluminum Alloys: Part I: Model Development
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
677
686
.
29.
Kurz
,
W.
, and
Fisher
,
D. J.
, 1998,
Fundamentals of Solidification
, 4th ed.,
Trans Tech Publication Ltd.
,
Switzerland
.
30.
Song
,
M.
, and
Viskanta
,
R.
, 2001, “
Lateral Freezing of an Anisotropic Porous Medium Saturated With an Aqueous Salt Solution
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
733
751
.
31.
Ni
,
J.
, and
Incropera
,
F. P.
, 1995, “
Extension of the Continuum Model for Transport Phenomena Occurring During Metal Alloy Solidification—II. Microscopic Considerations
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1285
1296
.
32.
Ishii
,
M.
, and
Zuber
,
N.
, 1979, “
Drag Coefficient and Relative Velocity in Bubble, Droplet or Particulate Flows
,”
AIChE J.
0001-1541,
25
, pp.
843
855
.
33.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
McGraw-Hill
,
New York
.
34.
Shyy
,
W.
, 1994,
Computational Modelling for Fluid Flow and Interfacial Transport
, 1st ed.,
Elsevier
,
Amsterdam
.
35.
Glimm
,
J.
,
Li
,
X. L.
, and
Liu
,
Y.
, 2003, “
Conservative Front Tracking With Improved Accuracy
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
41
, pp.
1926
1947
.
36.
Seredyński
,
M.
, and
Banaszek
,
J.
, 2007, “
Comparison of Two Front Tracking Techniques on a Fixed Grid in Modelling Binary Alloy Solidification
,”
Proceedings of the 13th Symposium on Heat and Mass Transfer
, Darlowko, Poland, pp.
933
940
.
37.
Burden
,
M. H.
, and
Hunt
,
J. D.
, 1974, “
Cellular and Dendritic Growth I and II Part
,”
J. Cryst. Growth
0022-0248,
22
, pp.
99
108
.
38.
Gandin
,
Ch. -A.
,
Guillemot
,
G.
,
Appolaire
,
B.
, and
Niane
,
N. T.
, 2003, “
Boundary Layer Correlation for Dendrite Tip Growth With Fluid Flow
,”
Mater. Sci. Eng., A
0921-5093,
342A
, pp.
44
50
.
39.
Poirer
,
D. R.
, 1988, “
Densities of Pb–Sn Alloys During Solidification
,”
Metall. Trans. A
0360-2133,
19A
, pp.
2349
2354
.
40.
Schrage
,
D. S.
, 1999, “
A Simplified Model of Dendritic Growth in the Presence of Natural Convection
,”
J. Cryst. Growth
0022-0248,
205
, pp.
410
426
.
41.
Banaszek
,
J.
, and
Furmanski
,
P.
, 2008, “
Computer Simulation of Multi-Scale Transport Processes in Binary Mixture Solidification
,”
Proceedings of Fifth International Conference on Transport Phenomena in Multiphase Systems
, Bialystok, Poland, pp.
31
50
.
42.
de Groh
,
H. C.
, III
,
Weidman
,
P. D.
,
Zakhem
,
R.
,
Ahuja
,
S.
, and
Beckermann
,
C.
, 1993, “
Calculation of Dendrite Settling Velocities Using a Porous Envelope
,”
Metall. Trans. B
0360-2141,
24
, pp.
749
753
.
43.
Furmanski
,
P.
, and
Banaszek
,
J.
, 2006, “
Modelling of the Mushy Zone Permeability for Solidification of Binary Alloys
,”
Mater. Sci. Forum
0255-5476,
508
, pp.
411
418
.
You do not currently have access to this content.