The instantaneous velocity vector and instantaneous temperature in a turbulent flow in a transitionally rough channel have been analyzed from unsteady Navier–Stokes equations and unsteady thermal energy equation for large Reynolds numbers. The inner and outer layers asymptotic expansions for the instantaneous velocity vector and instantaneous temperature have been matched in the overlap region by the Izakson–Millikan–Kolmogorov hypothesis. The higher order effects and implications of the intermediate (or meso) layer are analyzed for the instantaneous velocity vector and instantaneous temperature. Uniformly valid solutions for instantaneous velocity vector have been decomposed into the mean velocity vector, and fluctuations in velocity vector, as well as the instantaneous temperature, have been decomposed into mean temperature and fluctuations in temperature. It is shown in the present work that if the mean velocity vector in the work of Afzal (1976, “Millikan Argument at Moderately Large Reynolds Numbers,” Phys. Fluids, 16, pp. 600–602) is replaced by instantaneous velocity vector, we get the results of Lundgren (2007, “Asymptotic Analysis of the Constant Pressure Turbulent Boundary Layer,” Phys. Fluids, 19, pp. 055105) for instantaneous velocity vector. The comparison of the predictions for momentum and thermal mesolayers is supported by direct numerical simulation (DNS) and experimental data.

1.
Robinson
,
S. K.
, 1986, “
Instantaneous Velocity Profile Measurements in a Turbulent Boundary Layer
,”
Chem. Eng. Commun.
0098-6445,
43
, pp.
347
369
.
2.
Nakayama
,
A.
,
Noda
,
H.
, and
Maeda
,
K.
, 2004, “
Similarity of Instantaneous and Filtered Velocity in the Near Wall Region of Zero Pressure Gradient Boundary Layer
,”
Fluid Dyn. Res.
0169-5983,
35
, pp.
299
321
.
3.
Lundgren
,
T. S.
, 2007, “
Asymptotic Analysis of the Constant Pressure Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
19
, p.
055105
.
4.
Afzal
,
N.
, 1976, “
Millikan Argument at Moderately Large Reynolds Numbers
,”
Phys. Fluids
,
19
, pp.
600
602
. 1070-6631
5.
Afzal
,
N.
, and
Yajnik
,
K.
, 1973, “
Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Number
,”
J. Fluid Mech.
,
57
, pp
23
32
. 1070-6631
6.
Afzal
,
N.
, 1982, “
Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer
,”
Ing.-Arch.
0020-1154,
53
, pp.
355
377
.
7.
Afzal
,
N.
, 1982, “
A Sub-Boundary Layer With a Two Dimensional Turbulent Boundary Layer
,”
J. Mec. Theor. Appl.
0750-7240,
1
, pp.
963
973
.
8.
Afzal
,
N.
, 1984, “
The Mesolayer Theory of Turbulent Flows
,”
AIAA J.
0001-1452,
22
, pp.
437
439
.
9.
Afzal
,
N.
, 1984, “
Period Between Bursting in Turbulent Shear Flow: Intermediate Scaling
,”
Curr. Sci.
,
53
(
12
), pp.
640
642
. 0011-3891
10.
Afzal
,
N.
and
Bush
,
W. B.
, 1985, “
A Three Layer Asymptotic Analysis of Turbulent Channel Flows
,”
Proc. Indian Acad. Sci., Math. Sci.
0253-4142,
94
, pp.
135
148
.
11.
Afzal
,
N.
, 2005, “
Analysis of Power Law and Log Law Velocity Profiles in Overlap Region of a Turbulent Wall Jet
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp,
1889
1910
.
12.
Afzal
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
, 2006, “
Power Law Turbulent Velocity Profile in Transitional Rough Pipes
,”
ASME Trans. J. Fluids Eng.
0098-2202,
128
, pp.
548
558
.
13.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2006, “
Recent Developments in Scaling of Wall-Bounded Flows
,”
Prog. Aerosp. Sci.
0376-0421,
42
, pp.
419
467
.
14.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Properties of the Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
522
, pp.
303
327
.
15.
Seena
,
A.
,
Bushra
,
A.
and
Afzal
,
N.
, 2008, “
Logarithmic Expansions for Reynolds Shear Stress and Reynolds Heat Flux in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
094501
.
16.
Gad-el-Hak
,
M.
, 2000,
Flow Control
,
Cambridge University Press
,
Cambridge
.
17.
Sreenivasan
,
K. R.
, 1989, “
The Turbulent Boundary Layer
,”
Frontiers in Experimental Fluid Mechanics
(
Lecture Notes in Engineering Vol. 46
),
M.
Gad-el-Hak
ed.,
Springer-Verlag
,
Berlin
, pp.
159
209
.
18.
Johansson
,
A. V.
, and
Alferdsson
,
P. H.
, 1982, “
On the Structure of Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
122
, pp.
295
314
.
19.
Sreenivasan
,
K. R.
, 1987, “
A Unified View of the Origin and Morphology of the Turbulent Boundary Layer Structure
,”
Turbulence Management and Relaminarisation, IUTAM Symposium
, Bangalore,
H. W.
Liepmann
and
R.
Narasimha
, eds.,
Springer-Verlag
,
Berlin
, pp.
37
66
.
20.
Long
,
R. R.
, and
Chen
,
T. C.
, 1981, “
Experimental Evidence of the Existence of the Mesolayer in Turbulent Systems
,”
J. Fluid Mech.
0022-1120,
105
, pp.
19
59
.
21.
Procaccia
,
I.
, and
Sreenivasan
,
K. R.
, 2008, “
The State of the Art in Hydrodynamic Turbulence: Past Successes and Future Challenges
,”
Physica D
0167-2789,
237
, pp.
2167
2183
.
22.
Sreenivasan
,
K. R.
, and
Bershadskii
,
A.
, 2006, “
Finite-Reynolds-Number Effects in Turbulence Using Logarithmic Expansions
,”
J. Fluid Mech.
0022-1120,
554
, pp.
477
498
.
23.
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 1998, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
373
, pp.
33
79
.
24.
Eyink
,
G. L.
, 2008, “
Turbulent Flow in Pipes and Channels as Cross-Stream “Inverse Cascades” of Vorticity
,”
Phys. Fluids
1070-6631,
20
, p.
125101
.
25.
Seena
,
A.
, and
Afzal
,
N.
, 2008, “
Intermediate Scaling of Turbulent Momentum and Heat Transfer in a Transitional Rough Channel
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
031701
.
26.
Seena
,
A.
and
Afzal
,
N.
, 2008, “
Power Law Velocity and Temperature Profiles in a Turbulent Channel Flow
, “
ASME J. Heat Transfer
0022-1481,
130
, p.
091701
.
27.
Metzger
,
M.
,
Lyons
,
A.
, and
Fife
,
P.
, 2008, “
Mean Momentum Balance in Moderately Favourable Pressure Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
617
, pp.
107
140
.
28.
Bush
,
W. B.
, and
Fendell
,
F. E.
, 1972, “
Asymptotic Analysis of Turbulent Channel and Boundary Layer Flows
,”
J. Fluid Mech.
0022-1120,
56
, pp.
657
681
.
29.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Scaling Heat Transfer in Fully Developed Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5284
5296
.
30.
Hoyas
,
S.
, and
Jimenez
,
J.
, 2006, “
Scaling of the Velocity Fluctuations in Turbulent Channels up to Re=2003
,”
Phys. Fluids
1070-6631,
18
, p.
011702
.
31.
Morrison
,
J. F.
,
McKeon
,
B. J.
,
Jiang
,
W.
, and
Smits
,
A. J.
, 2004, “
Scaling of the Streamwise Velocity Component in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
508
, pp.
99
131
.
32.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2004, “
Surface Heat-Flux Fluctuations in a Turbulent Channel Up to Rτ=1020 With Pr=0.025 and 0.71
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
404
419
.
33.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2009, “
Evidence of Non-Logarithmic Behavior of Turbulent Channel and Pipe Flow
,”
AIAA J.
0001-1452,
47
(
3
), pp.
535
541
.
34.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2008, “
Recent Developments in Scaling of Wall-Bounded Flows
,”
Fifth AIAA Theoretical Fluid Mechanics Conference
, Seattle, WA, June 23–28, AIAA Paper No. 2008–4238.
35.
Squire
,
H.
, 1948, “
Reconsideration of the Theory of Free Turbulence
,”
Philos. Mag.
,
39
(
288
), pp.
1
20
. 1478-6435
36.
Afzal
,
N.
, 2009, “
Comment on “Evidence of Non-Logarithmic Behavior of Turbulent Channel and Pipe Flow” [AIAA Journal, 47, pp. 535–541 (2009)]
,” to be published.
37.
Klewicki
,
J. C.
, 2006, “
Mean Momentum Balance: Implications for Turbulence Control
,”
NUS-IMS Workshop on Transition and Turbulence Control
, Vol.
8
, Lecture Note Series,
National University of Singapore
, Singapore, pp.
283
396
.
38.
Klewicki
,
J. C.
, and
Moffit
,
J. L.
, 2007, “
Measurement Considerations in Wall-Bounded Turbulent Flows: Wall Shear Stress
,”
Handbook of Fluid Mechanics
,
C.
Tropea
and
J.
Foss
, eds.,
Springer-Verlag
.
39.
Klewicki
,
J. C.
, and
Fife
,
P.
, 2007, “
On Discerning Dynamical Structure From the Once-Integrated Momentum Equation
,”
16th Australasian Fluid Mechanics Conference Crown Plaza
, Gold Coast Australia, December 2–7, pp.
159
162
.
40.
Klewicki
,
J.
,
Priyadarshana
,
P. J. A.
, and
Metzger
,
M. M.
, 2008, “
Statistical Structure of the Fluctuating Wall Pressure and its In-Plane Gradients at High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
609
, pp.
195
220
.
41.
Morris
,
S. C.
,
Stolpa
,
S. R.
,
Slaboch
,
P. E.
, and
Klewicki
,
J.
, 2007, “
Near Surface Particle Image Velocimetry Measurements in a Transitionally Rough-Wall Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120,
580
, pp.
319
338
.
42.
Mehdi
,
F.
,
Klewicki
,
J. C.
, and
White
,
C.
, 2008, “
Refined Analysis of the Mean Momentum Balance in Rough-Wall Turbulent Boundary Layers
,”
61st Annual Meeting of the American Physical Society
, Division of Fluid Dynamics meeting, November 23, 2008, San Antonio Texas.
43.
Priyadarshana
,
P. J. A.
,
Klewicki
,
J.
Treat
,
S.
, and
Foss
,
J.
, 2007, “
Statistical Structure of Turbulent-Boundary Layer Velocity-Vorticity Products at High and Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
570
, pp.
307
346
.
44.
Phuong
,
M. L
, and
Papavassiliou
,
D. V.
, 2008, “
On the Scaling of Heat Transfer Using Thermal Flux Gradients for Fully Developed Turbulent Channel and Couette Flows
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
404
412
.
You do not currently have access to this content.