This work is focused on the simulation and prediction of turbulent natural convection flows by means of two-equation eddy-viscosity models. In order to show the generality, precision, and numerical issues related to these models under natural convection, three different buoyancy-driven cavities have been simulated: a tall cavity with a 30:1 aspect ratio, a cavity with a 5:1 aspect ratio, and, finally, a 4:1 aspect ratio cavity. All cases are solved under moderate and∕or transitional Rayleigh numbers (2.43×1010, 5×1010, and 1×1010, respectively) and all simulations are compared to experimental and∕or direct numerical simulation data available in literature. These different situations allow to check the applicability of two-equation eddy-viscosity models in buoyancy-driven flows, giving criteria on computational effort∕precision and their physical behavior.

1.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
2.
Peng
,
S.
, and
Davidson
,
L.
, 1999, “
Computation of Turbulent Buoyant Flows in Enclosures With Low-Reynolds Number k‐ω Models
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
172
184
.
3.
Davidson
,
L.
, 1990, “
Calculation of the Turbulent Buoyancy-Driven Flow in a Rectangular Cavity Using an Efficient Solver and Two Different Low Reynolds Number k‐ϵ Models
,”
Numer. Heat Transfer, Part A
1040-7782,
18
, pp.
129
147
.
4.
Hanjalić
,
K.
, and
Vasić
,
S.
, 1993, “
Computation of Turbulent Natural-Convection in Rectangular Enclosures With an Algebraic Flux Model
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
3603
3624
.
5.
Hanjalić
,
K.
,
Kenjereš
,
S.
, and
Durst
,
F.
, 1995, “
Natural Convection in Partitioned Two-Dimensional Enclosures at Higher Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
7
), pp.
1407
1427
.
6.
Kenjereš
,
S.
,
Gunarjo
,
S. B.
, and
Hanjalić
,
K.
, 2005, “
Contribution to Elliptic Relaxation Modelling of Turbulent Natural and Mixed Convection
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
7
), pp.
569
586
.
7.
Ince
,
N.
, and
Launder
,
B.
, 1989, “
Computation of Buoyancy-Driven Turbulent Flows in Rectangular Enclosures
,”
Int. J. Heat Fluid Flow
0142-727X,
10
(
1
), pp.
110
117
.
8.
Pérez-Segarra
,
C. D.
,
Oliva
,
A.
,
Costa
,
M.
, and
Escanes
,
F.
, 1995, “
Numerical Experiments in Turbulent Natural and Mixed Convection in Internal Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
5
(
1
), pp.
13
33
.
9.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
, pp.
1299
1310
.
10.
Wilcox
,
D. C.
, 1994, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
0001-1452,
32
, pp.
247
255
.
11.
Goldberg
,
U.
,
Peroomian
,
O.
, and
Chakravarthy
,
S.
, 1998, “
A Wall-Distance-Free k‐ϵ Model With Enhanced Near-Wall Treatment
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
457
462
.
12.
Markatos
,
N.
,
Malin
,
M.
, and
Cox
,
G.
, 1982, “
Mathematic Modelling of Buoyancy-Induced Smoke Flow in Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
63
75
.
13.
Markatos
,
N.
, and
Pericleous
,
K.
, 1984, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
755
772
.
14.
Heindel
,
T.
,
Ramadhyani
,
S.
, and
Incropera
,
F.
, 1994, “
Assessment of Turbulence Models for Natural Convection in an Enclosure
,”
Numer. Heat Transfer, Part B
1040-7790,
26
, pp.
147
172
.
15.
Dafa’alla
,
A.
, and
Betts
,
P.
, 1996, “
Experimental Study of Turbulent Natural Convection in a Tall Air Cavity
,”
Exp. Heat Transfer
0891-6152,
9
, pp.
165
194
.
16.
Cheeswright
,
R.
,
King
,
K.
, and
Ziai
,
S.
, 1986, “
Experimental Data for the Validation of Computer Codes for the Prediction of Two-Dimensional Buoyant Cavity Flows
,”
Proceedings of Significant Questions in Buoyancy Affected Enclosure or Cavity Flows
, pp.
75
81
.
17.
Henkes
,
R.
,
van Der Vlugt
,
F.
, and
Hoogendoorn
,
C.
, 1991, “
Natural Convection Flow in a Square Cavity Calculated With Low Reynolds-Number Turbulence Models
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
377
388
.
18.
Rodi
,
W.
, 1984, “
Turbulence Models and Their Application in Hydraulics: A State-of-the-Art Review
,” University of Karlsrhue, Germany.
19.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
20.
Cadafalch
,
J.
,
Pérez-Segarra
,
C. D.
,
Cónsul
,
R.
, and
Oliva
,
A.
, 2002, “
Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
11
21
.
21.
Roache
,
P.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
123
160
.
22.
Roache
,
P.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
23.
Roache
,
P.
, 1972, “
On Artificial Viscosity
,”
J. Comput. Phys.
0021-9991,
10
, pp.
169
184
.
24.
Trias
,
F. X.
,
Soria
,
M.
,
Oliva
,
A.
, and
Pérez-Segarra
,
C. D.
, 2007, “
Direct Numerical Simulation of Two and Three-Dimensional Turbulent Natural Convection Flows in a Differentially Heated Cavity of Aspect Ratio 4
,”
J. Fluid Mech.
0022-1120,
586
, pp.
259
293
.
25.
Murakami
,
S.
,
Kato
,
S.
,
Chiakamoto
,
T.
, and
Laurence
,
D.
, 1996, “
New Low-Reynolds-Number k‐ϵ Model Including Damping Effect due to Buoyancy in a Stratified Flow Field
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
16
), pp.
3483
3496
.
26.
Liu
,
F.
, and
Wen
,
J.
, 1999, “
Development and Validation of an Advanced Turbulence Model for Buoyancy Driven Flows in Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3967
3981
.
27.
Launder
,
B.
, and
Sharma
,
B.
, 1974, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
0094-4548,
1
(
2
), pp.
131
138
.
28.
So
,
R.
, and
Sommer
,
T.
, 1994, “
A Near-wall Eddy Conductivity Model for Fluids With Different Prandtl Numbers
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
844
854
.
29.
Xin
,
S.
, and
Quere
,
P.
, 1995, “
Direct Numerical Simulations of Two-Dimensional Chaotic Natural Convection in a Differentially Heated Cavity of Aspect Ratio 4
,”
J. Fluid Mech.
0022-1120,
304
, pp.
87
118
.
You do not currently have access to this content.