Heat conduction in submicron crystalline materials can be well modeled by the Boltzmann transport equation (BTE). The Monte Carlo method is effective in computing the solution of the BTE. These past years, transient Monte Carlo simulations have been developed, but they are generally memory demanding. This paper presents an alternative Monte Carlo method for analyzing heat conduction in such materials. The numerical scheme is derived from past Monte Carlo algorithms for steady-state radiative heat transfer and enables us to understand well the steady-state nature of phonon transport. Moreover, this algorithm is not memory demanding and uses very few iteration to achieve convergence. It could be computationally more advantageous than transient Monte Carlo approaches in certain cases. Similar to the famous Mazumder and Majumdar’s transient algorithm (2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123, pp. 749–759), the dual polarizations of phonon propagation, the nonlinear dispersion relationships, the transition between the two polarization branches, and the nongray treatment of phonon relaxation times are accounted for. Scatterings by different mechanisms are treated individually, and the creation and/or destruction of phonons due to scattering is implicitly taken into account. The proposed method successfully predicts exact solutions of phonon transport across a gallium arsenide film in the ballistic regime and that across a silicon film in the diffusion regime. Its capability to model the phonon scattering by boundaries and impurities on the phonon transport has been verified. The current simulations agree well with the previous predictions and the measurement of thermal conductivity along silicon thin films and along silicon nanowires of widths greater than 22nm. This study confirms that the dispersion curves and relaxation times of bulk silicon are not appropriate to model phonon propagation along silicon nanowires of 22nm width.

1.
Majumdar
,
A.
, 1998,
Microscale Energy Transport
,
C. L.
Tien
,
A.
Majumdar
, and
F. M.
Gerner
, eds.,
Taylor & Francis
,
Washington, DC
.
2.
Ziman
,
J. M.
, 2001,
Electrons and Phonons
, 2nd ed.,
Cambridge University Press
,
London
.
3.
McConnell
,
A. D.
, and
Goodson
,
K. E.
, 2005, “
Thermal Conduction in Silicon Micro- and Nanostructures
,”
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
129
168
.
4.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
5.
Chung
,
J. D.
, and
Kaviany
,
M.
, 2000, “
Effects of Phonon Pore Scattering and Pore Randomness on Effective Conductivity of Porous silicon
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
521
538
.
6.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481
123
, pp.
130
137
.
7.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
8.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1176
1181
.
9.
Pilon
,
L.
, and
Katika
,
K. M.
, 2004, “
Modified Method of Characteristics for Simulating Microscale Energy Transport
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
35
743
.
10.
Peterson
,
R. B.
, 1994, “
Direct Simulation of Phonon-Mediate Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
815
822
.
11.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
12.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1129
1137
.
13.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2006, “
Non-Equilibrium Phonon Distributions in Sub-100nm Silicon Transistors
,”
ASME J. Heat Transfer
0022-1481,
128
(
7
), pp.
638
647
.
14.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
, 2005, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
3
, pp.
5
32
.
15.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
30
36
.
16.
Liu
,
W.
, and
Asheghi
,
M.
, 2006, “
Thermal Conductivity of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
75
83
.
17.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2934
2936
.
18.
Chantrenne
,
P.
,
Barrat
,
J. L.
,
Blasé
,
X.
, and
Gale
,
J. D.
, 2005, “
An Analytical Model for the Thermal Conductivity of Silicon Nanostructures
,”
J. Appl. Phys.
0021-8979,
97
, p.
104318
.
19.
Kittel
,
C.
, 1986,
Introduction to Solid State Physics
, 6th ed.,
Wiley
,
New York
.
20.
Chung
,
J. D.
,
Mc Gaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
376
380
.
21.
Modest
,
M. F.
, 1993,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
22.
Brockhouse
,
B. N.
, 1959, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
0031-9007,
2
, pp.
256
258
.
23.
Mingo
,
N.
, 2003, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
0163-1829,
68
, p.
113308
.
24.
Chen
,
G.
, 2000, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
471
480
.
25.
Brewster
,
M. Q.
, 1992,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
26.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
, 1965,
Introduction to Physical Gas Dynamics
,
Wiley
,
New York
.
27.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
28.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
, pp.
2461
2471
.
29.
Han
,
Y. J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystal at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
, pp.
6033
6042
.
30.
Tamura
,
S.
, 1985, “
Spontaneous Decay Rates of LA Phonons in Quasi-Isotropic Solids
,”
Phys. Rev. B
0163-1829,
31
, pp.
2574
2598
.
31.
Tamura
,
S.
, and
Maris
,
H. J.
, 1995, “
Temperature Dependence of Phonon Lifetime in Dielectric Crystal
,”
Phys. Rev. B
0163-1829,
51
, pp.
2857
2863
.
32.
Waugh
,
J. L.
, and
Dolling
,
G.
, 1963, “
Crystal Dynamics of Gallium Arsenide
,”
Phys. Rev.
0031-899X,
132
, pp.
2410
2412
.
33.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
, 2005, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales
,”
Phys. Rev. B
0163-1829,
72
, p.
064305
.
34.
Sondheimer
,
E. H.
, 2001, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
0001-8732,
50
(
6
), pp.
499
537
.
35.
Nishiguchi
,
N.
, 1996, “
Electron Scattering Due to Confined and Extended Acoustic Phonons in a Quantum Wire
,”
Phys. Rev. B
0163-1829,
54
, pp.
1494
1497
.
36.
Bannov
,
N.
,
Aristov
,
V.
, and
Mitin
,
V.
, 1995, “
Electron Relaxation Times Due to the Deformation-Potential Interaction of Electrons With Confined Acoustic Phonons in a Free-Standing Quantum Well
,”
Phys. Rev. B
0163-1829,
51
, pp.
9930
9942
.
37.
Zou
,
J.
, and
Balandin
,
A.
, 2001, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
0021-8979,
89
, pp.
2932
2938
.
You do not currently have access to this content.