Cylindrical pin fins with tip clearances are investigated in the low Reynolds number range 5<ReD<400 in a plane minichannel. Five tip gaps are investigated ranging from a full pin fin (t*=0.0) to a clearance of t*=0.4D*, where D* is the pin diameter. It is established that unlike high Reynolds number flows, the flow and heat transfer are quite sensitive to tip clearance. A number of unique flow effects, which increase the heat transfer performance, are identified. The tip gap affects the heat transfer coefficient by eliminating viscosity dominated end wall effects on the pin, by eliminating the pin wake shadow on the end walls, by inducing accelerated flow in the clearance, by reducing or impeding the development of recirculating wakes, and by redistributing the flow along the height of the channel. In addition, tip gaps also reduce form losses and friction factor. A clearance of t*=0.3D* was found to provide the best performance at ReD<100; however, for ReD>100, both t*=0.2D* and 0.3D* were comparable in performance.

1.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
2.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
3.
Arora
,
S. C.
, and
Abdel Messeh
,
W.
, 1983, “
Heat Transfer Experiments in High Aspect Ratio Rectangular Channel With Epoxied Short Pin Fins
,” ASME Paper No. 83-GT-57.
4.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
, 1986, “
Orientation Effects on Natural Convection/Radiation Heat Transfer From Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
3
), pp.
359
368
.
5.
Sparrow
,
E. M.
, and
Grannis
,
V. B.
, 1991, “
Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond-Shape Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
3
), pp.
589
600
.
6.
Goldstein
,
R. J.
,
Jabbari
,
M. Y.
, and
Chen
,
S. B.
, 1994, “
Convective Mass Transfer and Pressure Loss Characteristics of Staggered Short Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
149
160
.
7.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
, 1998, “
Convective Heat Transfer of Cubic Fin Arrays In a Narrow Channel
,”
J. Turbomach.
0889-504X,
120
, pp.
362
367
.
8.
Bilen
,
K.
,
Akyol
,
U.
, and
Yapici
,
S.
, 2001, “
Heat Transfer and Friction Correlations and Thermal Performance Analysis for a Finned Surface
,”
Energy Convers. Manage.
0196-8904,
42
, pp.
1071
1083
.
9.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part Friction Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
389
396
.
10.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part 2: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
397
403
.
11.
Saha
,
A. K.
, and
Acharya
,
S.
, 2003, “
Parametric Study of Unsteady Flow and Heat Transfer in a Pin-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3815
3830
.
12.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1731
1743
.
13.
Marques
,
C.
, and
Kelly
,
K. W.
, 2004, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
J. Heat Transfer
0022-1481,
126
, pp.
434
444
.
14.
Uzol
,
O.
, and
Camci
,
C.
, 2005, “
Heat Transfer, Pressure Loss and Flow Field Measurement Downstream a Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
J. Heat Transfer
0022-1481,
127
, pp.
458
471
.
15.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
J. Fluids Eng.
0098-2202,
127
, pp.
419
430
.
16.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3615
3627
.
17.
Ko
,
J.-H.
,
Ewing
,
M. E.
,
Guezennec
,
Y. G.
, and
Christensen
,
R. N.
, 2002, “
Development of a Low Reynolds Number Enhanced Heat Transfer Surface Using Flow Visualization Techniques
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
444
454
.
18.
Sparrow
,
E. M.
, and
Ramsey
,
J. W.
, 1978, “
Heat Transfer and Pressure Drop for a Staggered Wall-Attached Array of Cylinders With Tip Clearance
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1369
1377
.
19.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdulah
,
R. M.
, 1993, “
Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin Fin Arrays
,”
J. Heat Transfer
0022-1481,
115
, pp.
576
583
.
20.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Ma
,
W.
, 1999, “
Effects of Flow Gap Atop Fin Elements on The Heat Transfer From Pin Fin Arrays
,” ASME Paper No. 99-GT-47.
21.
Moores
,
K. A.
, and
Joshi
,
Y. K.
, 2003, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
J. Heat Transfer
0022-1481,
125
, pp.
999
1006
.
22.
Rozati
,
A.
,
Tafti
,
D. K.
, and
Blackwell
,
N. E.
, 2007, “
Thermal Performance of Pin Fins at Low Reynolds Numbers in Mini-Micro Channels
,” ASME Paper No. HT2007-32158.
23.
Zhang
,
L.
,
Tafti
,
D.
,
Najjar
,
F.
, and
Balachander
,
S.
, 1997, “
Computations of Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers on the CM-5: Effects of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
66
), pp.
1325
1341
.
24.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully-Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
25.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of ASME Fluids Engineering Division
, FED-Vol. 256,
ASME
,
New York
.
26.
Zukauskas
,
A.
, 1972, “
Heat Transfer From Tubes in Cross Flow
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, Jr.
, eds., Vol.
8
,
Academic
,
New York
.
27.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2006,
Fundamental of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
28.
Tafti
,
D. K.
, 2005, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
1
), pp.
92
104
.
29.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Thole
,
K. A.
, and
Graham
,
A.
, 2006, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
(
2
), pp.
243
258
.
30.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
, 2008, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2950
2966
31.
Gee
,
D. L.
, and
Webb
,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
1127
1136
.
You do not currently have access to this content.