A new two-dimensional (2D) transient finite element model was developed to study the thermal behavior during the multilayer deposition by the laser engineered net shaping rapid fabrication process. The reliability of the 2D model was evaluated by comparing the results obtained from the 2D model with those computed by a previously developed three-dimensional (3D) model. It is found that the predicted temperature distributions and the cooling rates in the molten pool and its surrounding area agree well with the experiment data available in literature and with the previous results calculated with the 3D model. It is also concluded that, for the geometry analyzed in this study, the 2D model can be used with good accuracy, instead of the computationally much more expensive 3D model, if certain precautions are taken to compensate for the 3D effects of the substrate. In particular, a 2D model could be applied to an in situ calculation of the thermal behavior of the deposited part during the fabrication, allowing dynamic control of the process. The 2D model is also applied to study the effects of substrate size and idle time on the thermal field and size of the molten pool.

1.
Atwood
,
C. L.
,
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Ensz
,
M. T.
,
Keicher
,
D. M.
,
Romero
,
J. A.
, and
Smugeresky
,
J. E.
, 1998, “
Laser Engineered Net Shaping (LENS®): A Tool for Direct Fabrication of Metal Parts
,”
Proceedings of ICALEO’98
,
Orlando, FL
, Nov. 16–19, pp.
E
-1–E-
7
.
2.
Lewis
,
G. K.
, and
Schlienger
,
M. E.
, 2003, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
0264-1275,
21
, pp.
417
423
.
3.
Sears
,
J. W.
, 2001, “
Solid Freeform Fabrication Technologies: Rapid Prototyping-Rapid Manufacturing
,”
Int. J. Powder Metall.
0020-7535,
37
, pp.
417
423
.
4.
Kurz
,
W.
, 2001, “
Solidification Microstructure—Processing Maps: Theory and Application
,”
Adv. Eng. Mater.
1438-1656,
3
, pp.
443
452
.
5.
Kelly
,
S. M.
, and
Kampe
,
S. L.
, 2004, “
Microstructural Evolution in Laser-deposited Multilayer Ti-6A1–4V Builds: Part II. Thermal Modeling
,”
Metall. Mater. Trans. A
1073-5623,
35
, pp.
1869
1879
.
6.
Colaco
,
R.
, and
Vilar
,
R.
, 1998, “
Effect of the Processing Parameters on the Proportion of Retained Austenite in Laser Surface Melted Tool Steels
,”
J. Mater. Sci. Lett.
0261-8028,
17
, pp.
563
567
.
7.
Colaco
,
R.
, and
Vilar
,
R.
, 1998, “
Effect of Laser Surface Melting on the Tempering Behavior of DIN X42Cr13 Stainless Tool Steel
,”
Scr. Mater.
1359-6462,
38
, pp.
107
113
.
8.
Hofmeister
,
W.
,
Griffith
,
M.
,
Ensz
,
M.
, and
Smugeresky
,
J.
, 2001, “
Solidification in Direct Metal Deposition by LENS® Processing
,”
JOM
1047-4838,
53
, pp.
30
34
.
9.
Hofmeister
,
W.
,
Wert
,
M.
,
Smugeresky
,
J.
,
Philliber
,
J.
,
Griffith
,
M.
, and
Ensz
,
M.
, 1999, “
Investigation of Solidification in the Laser Engineered Net Shaping (LENS) Process
,”
JOM-e online
,
51
(
7
) www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.htmlwww.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.html.
10.
Griffith
,
M. L.
,
Ensz
,
M. T.
,
Puskar
,
J. D.
,
Robino
,
C. V.
,
Brooks
,
J. A.
,
Philliber
,
J. A.
,
Smugeresky
,
J. E.
, and
Hofmeister
,
W. H.
, 2000, “
Understanding the Microstructure and Properties of Components Fabricated by Laser Engineered Net Shaping (LENS)
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
625
, pp.
9
20
.
11.
Griffith
,
M. L.
,
Schlienger
,
E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Smugeresky
,
J. E.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Hofmeister
,
W. H.
,
Wert
,
M. J.
, and
Nelson
,
D. V.
, 1999, “
Understanding Thermal Behavior in the LENS™ Process
,”
Mater. Des.
0264-1275,
20
, pp.
107
114
.
12.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Smugeresky
,
J. E.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Hofmeister
,
W. H.
,
Wert
,
M. J.
, and
Nelson
,
D. V.
, 1998, “
Thermal Behavior in the LENS™ Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
The University of Texas at Austin
,
Austin, TX
, pp.
89
97
.
13.
Wei
,
W.
,
Zhou
,
Y.
,
Ye
,
R. Q.
,
Lee
,
D.
,
Craig
,
J. E.
,
Smugeresky
,
J. E.
, and
Lavernia
,
E. J.
, 2002, “
Investigation of the Thermal Behavior During the LENS™ Process
,”
International Conference on Metal Powder Deposition for Rapid Manufacturing
,
San Antonio, TX
, pp.
128
135
.
14.
Grujicic
,
M.
,
Gao
,
G.
, and
Figliola
,
R. S.
, 2001, “
Computer Simulations of the Evolution of Solidification Microstructure in the LENS™ Rapid Function Process
,”
Appl. Surf. Sci.
0169-4332,
183
,
43
57
.
15.
Grujicic
,
M.
,
Hu
,
Y.
,
Fadel
,
G. M.
, and
Keicher
,
D. M.
, 2002, “
Optimization of the LENS Rapid Fabrication Process for In-flight Melting of Feed Powder
,”
J. Mater. Synth. Process.
1064-7562,
9
, pp.
223
233
.
16.
Ye
,
R.
,
Smugeresky
,
J. E.
,
Zheng
,
B.
,
Zhou
,
Y.
, and
Lavernia
,
E. J.
, 2006, “
Numerical Modeling of the Thermal Behavior During the LENS Process
,”
Mater. Sci. Eng., A
0921-5093,
428
, pp.
47
53
.
17.
Costa
,
L.
,
Vilar
,
R.
,
Reti
,
T.
, and
Deus
,
A. M.
, 2005, “
Rapid Tooling by Laser Powder Deposition: Process Simulation Using Finite Element Analysis
,”
Acta Mater.
1359-6454,
53
, pp.
3987
3999
.
18.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
, 1992, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
0360-2141,
23
, pp.
631
642
.
19.
Han
,
L.
,
Liou
,
F. W.
, and
Phatak
,
K. M.
, 2004, “
Modeling of Laser Cladding with Powder Injection
,”
Metall. Mater. Trans. B
1073-5615,
35
, pp.
1139
1150
.
20.
Ye
,
R.
,
Zhou
,
Y.
,
Wei
,
W.
,
Smugeresky
,
J. E.
, and
Lavernia
,
E. J.
, 2003, “
Numerical Modeling of the Thermal Behavior During the LENS Process
,”
Materials Science and Technology 2003 Meeting
,
Chicago, IL
, Nov. 9–12, pp.
369
376
.
21.
Wang
,
L.
, and
Felicelli
,
S.
, 2006, “
Analysis of Thermal Phenomena in LENS™ Deposition
,”
Mater. Sci. Eng., A
0921-5093,
435–436
, pp.
625
631
.
22.
Wang
,
L.
,
Felicelli
,
S.
,
Gooroochurn
,
Y.
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
, 2008, “
Optimization of the LENS™ Process for Steady Molten Pool Size
,”
Mater. Sci. Eng., A
0921-5093,
474
, pp.
148
156
.
23.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
, p.
460
.
You do not currently have access to this content.