The effect of aspect ratio on natural convection flow in a cavity submitted to periodic temperature boundary, is investigated numerically. The temperature of the heated wall is either maintained constant or varied sinusoidally with time while the temperature of the opposite vertical wall is maintained constant. The results are given for a range of varied parameters as Rayleigh number (5×103Ra106), cavity aspect ratio (16A8), and period of the sinusoidally heated wall (1τ1600). The amplitude of oscillation (a=0.8) and the Prandtl number (Pr=0.71) were kept constant. The results obtained in the steady state regime show that the heat transfer averaged over the cold wall is maximum when the aspect ratio is in the range 1A2. In the case of a periodic temperature boundary, it is shown that the deviation between the mean heat transfer and the heat transfer of the constant heated case is larger for shallow cavities.

1.
Bejan
,
A.
, and
Kraus
,
A. D.
, eds., 2003,
Heat Transfer Handbook
,
Wiley
,
New York
.
2.
Ingham
,
D. B.
, and
Pop
,
I.
, eds., 2002,
Transport Phenomena in Porous Media
,
Pergamon
,
Oxford, UK
, Vol.
II
.
3.
Vafai
,
K.
, ed., 2000,
Handbook of Porous Media
,
Marcel Dekker
,
New York
.
4.
Patterson
,
J.
, and
Imberger
,
J.
, 1980, “
Unsteady Natural Convection in a Rectangular Cavity
,”
J. Fluid Mech.
0022-1120,
100
, pp.
65
86
.
5.
Nicolette
,
V. F.
,
Yang
,
K. T.
, and
Lloyd
,
J. R.
, 1985, “
Transient Cooling by Natural Convection in a Two-Dimensional Square Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1721
1732
.
6.
Hall
,
J. D.
,
Bejan
,
A.
, and
Chaddock
,
J. B.
, 1988, “
Transient Natural Convection in a Rectangular Enclosure With One Heated Side Wall
,”
Int. J. Heat Fluid Flow
0142-727X,
9
, pp.
396
404
.
7.
Vasseur
,
P.
, and
Robillard
,
L.
, 1982, “
Natural Convection in a Rectangular Cavity With Wall Temperature Decreasing at a Uniform Rate
,”
Waerme- Stoffuebertrag.
0042-9929,
16
, pp.
199
207
.
8.
Schladow
,
S. G.
,
Patterson
,
J. C.
, and
Street
,
R. L.
, 1989, “
Transient Flow in a Side-Heated Cavity at High Rayleigh Number: A Numerical Study
,”
J. Fluid Mech.
0022-1120,
200
, pp.
121
148
.
9.
Kazmierczak
,
M.
, and
Chinoda
,
Z.
, 1992, “
Buoyancy-Driven Flow in an Enclosure With Time Periodic Boundary Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1507
1518
.
10.
Lage
,
J. I.
, and
Bejan
,
A.
, 1993, “
The Resonance of Natural Convection in an Enclosure Heated Periodically From the Side
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
2027
2038
.
11.
Lakhal
,
E. K.
,
Hasnaoui
,
M.
, and
Vasseur
,
P.
, 1999, “
Numerical Study of Transient Natural Convection in a Cavity Heated Periodically With Different Types of Excitations
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3927
3941
.
12.
Abourida
,
B.
,
Hasnaoui
,
M.
, and
Douamna
,
S.
, 1998, “
Convection Naturelle dans une Cavité Carrée avec des Parois Verticales Soumises à des Températures Périodiques
,”
Rev. Gen. Therm.
0035-3159,
37
, pp.
788
800
.
13.
Semma
,
E.
,
Timchenko
,
V.
,
El Ganaoui
,
M.
, and
Leonardi
,
E.
, 2005, “
The Effect of Wall Temperature Fluctuations on the Heat Transfer and Fluid Flow Occurring in a Liquid Enclosure
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
547
557
.
14.
Saeid
,
N. H.
, and
Mohamad
,
A. A.
, 2005, “
Periodic Free Convection From a Vertical Plate in a Saturated Porous Medium, Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3855
3863
.
15.
Kuhn
,
D.
, and
Oosthuizen
,
P. H.
, 1987, “
Unsteady Natural Convection in a Partially Heated Rectangular Cavity
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
789
801
.
16.
Antohe
,
B. V.
, and
Lage
,
J. L.
, 1996, “
Experimental Investigation on Pulsating Horizontal Heating of an Enclosure Filled With Water
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
889
896
.
17.
Kwak
,
H. S.
, and
Hyun
,
J. M.
, 1996, “
Natural Convection in an Enclosure Having a Vertical Wall With Time-Varying Temperature
,”
J. Fluid Mech.
0022-1120,
329
, pp.
65
88
.
18.
Chung
,
K. H.
,
Kwak
,
H. S.
, and
Hyun
,
J. M.
, 2001, “
Finite-Wall Effect on Buoyant Convection in an Enclosure With Pulsating Exterior Surface Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
721
732
.
19.
Kim
,
G. B.
,
Hyun
,
J. M.
, and
Kwak
,
H. S.
, 2002, “
Enclosed Buoyant Convection With Internal Heat Generation under Oscillating Sidewall Temperature
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
577
580
.
20.
Bae
,
J. H.
, and
Hyun
,
J. M.
, 2004, “
Time-Dependent Buoyant Convection in an Enclosure With Discrete Heat Sources
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
3
11
.
21.
Saeid
,
N. H.
, 2004, “
Periodic Free Convection From Vertical Plate Subjected to Periodic Surface Temperature Oscillation
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
569
574
.
22.
Dalal
,
A.
, and
Das
,
M. K.
, 2006, “
Natural Convection in a Cavity With a Wavy Wall Heated From Below and Uniformly Cooled From the Top and Both Sides
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
717
725
.
23.
Zhang
,
X.
,
Maruyama
,
S.
, and
Yamaguchi
,
H.
, 2005, “
Laminar Natural Convection Heat Transfer From a Vertical Baffled Plate Subjected to a Periodic Oscillation
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
733
739
.
24.
Fortin
,
M.
,
Peyret
,
R.
, and
Temam
,
R.
, 1971, “
Résolution Numérique des Équations de Navier–Stokes pour un Fluide Incompressible
,”
J. Mec.
0021-7832,
10
(
3
), pp.
357
390
.
25.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Mc Graw–Hill
,
New York
.
26.
Leonard
,
B. P.
, 1979 “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
27.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheuerer
,
G.
, 1990, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Bench-mark Solutions
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
189
207
.
28.
Xin
,
S.
, and
Le Quéré
,
P.
, 2002, “
An Extended Chebyshev Pseudo-Spectral Benchmark for the 8:1 Differentially Heated Cavity
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
, pp.
981
998
.
29.
Frederick
,
R. L.
, 1999, “
On the Aspect Ratio for Which the Heat Transfer in Differentially Heated Cavities is Maximum
,”
Int. Commun. Heat Mass Transfer
0735-1933,
26
, pp.
549
558
.
You do not currently have access to this content.