In the present study, fluid-flow and heat-transfer characteristics of a microchannel heat sink subject to an impinging jet are experimentally investigated. In order to evaluate the cooling performance of a microchannel heat sink subject to an impinging jet under the condition of fixed pumping power, the pressure drop across the heat sink and temperature distributions at its base are measured. Specifically, a microthermal sensor array is fabricated and used to accurately measure temperature distributions at the base of the heat sink. Based on these experimental results, a correlation for the pressure drop across a microchannel heat sink subject to an impinging jet and a correlation for its thermal resistance are suggested. In addition, it is shown that the cooling performance of an optimized microchannel heat sink subject to an impinging jet is enhanced by about 21% compared to that of the optimized microchannel heat sink with a parallel flow under the fixed-pumping-power condition.

1.
Chu
,
R. C.
, 1986, “
Heat Transfer in Electronic Systems
,” in
Proceedings of the 8th International Conference on Heat Transfer
, New York, pp.
293
305
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1982, “
Ultrahigh Thermal Conductance Microstructure for Integrated Circuits
,”
IEEE Proc. 32nd Electronics Conference
, pp.
145
149
.
4.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
, 1997, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
, pp.
96
102
.
5.
Pak
,
B. C.
,
Chun
,
W. C.
,
Baek
,
B. J.
, and
Copeland
,
D.
, 1997, “
Forced Air Cooling by Using Manifold Microchannel Heat Sinks
,”
Adv. Electron. Circuit Packag.
0065-2520,
2
, pp.
1837
1842
.
6.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
, 2001, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1451
1454
.
7.
Kim
,
S. J.
, and
Jang
,
S. P.
, 2001, “
Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1711
1724
.
8.
Kondo
,
Y.
,
Behnia
,
M.
,
Nakayama
,
W.
, and
Matsushima
,
H.
, 1998, “
Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
259
266
.
9.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
ASME Micromechanical Sensors, Actuators and Systems
,
32
, pp.
123
134
.
10.
Rahman
,
M. M.
, 2000, “
Measurements of Heat Transfer in Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
, pp.
497
506
.
11.
Harms
,
T. M.
,
Kazmierczak
,
F. M.
, and
Gerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
149
157
.
12.
Jang
,
S. P.
,
Kim
,
S. J.
, and
Paik
,
K. W.
, 2003, “
Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array
,”
Sens. Actuators, A
0924-4247,
105
, pp.
211
224
.
13.
Kim
,
S. J.
, and
Jang
,
S. P.
, 2002, “
Effects of the Darcy Number, the Prandtl Number and the Reynolds Number on Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3885
3896
.
14.
Jang
,
S. P.
, “
Experimental and Numerical Study on Heat Transfer Enhancement Using a Microchannel Heat Sink Subject to an Impinging Jet
,” Doctoral thesis in KAIST, 2004.
15.
Blevins
,
R. D.
, 1992,
Applied Fluid Dynamics Handbook
, Krieger, Malabar.
16.
Lau
,
K. S.
,
Mahajan
,
L. R.
, 1989, “
Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
12
, pp.
757
765
.
17.
Hilbert
,
C.
,
Sommerfeldt
,
S.
,
Gupta
,
O.
,
Herrell
,
D. J.
, 1990, “
High Performance Air Cooled Heat Sinks for Integrated Circuits
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
13
, pp.
1022
1031
.
18.
Knight
,
R. W.
,
Hall
,
D. J.
,
Gooding
,
S. J.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
823
842
.
19.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructure for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
635
645
.
You do not currently have access to this content.