The problem of self-heating in microelectronic devices has begun to emerge as a bottleneck to device performance. Published models for phonon transport in microelectronics have used a gray Boltzmann transport equation (BTE) and do not account adequately for phonon dispersion or polarization. In this study, the problem of a hot spot in a submicron silicon-on-insulator transistor is addressed. A model based on the BTE incorporating full phonon dispersion effects is used. A structured finite volume approach is used to solve the BTE. The results from the full phonon dispersion model are compared to those obtained using a Fourier diffusion model. Comparisons are also made to previously published BTE models employing gray and semi-gray approximations. Significant differences are found in the maximum hot spot temperature predicted by the different models. Fourier diffusion underpredicts the hot spot temperature by as much as 350% with respect to predictions from the full phonon dispersion model. For the full phonon dispersion model, the longitudinal acoustic modes are found to carry a majority of the energy flux. The importance of accounting for phonon dispersion and polarization effects is clearly demonstrated.

1.
Flik
,
M. I.
,
Choi
,
B. I.
, and
Goodson
,
K. E.
, 1992, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
666
674
.
2.
Majumdar
,
A.
, 1998, “
Microscale Energy Transport in Solids
,” in
Microscale Energy Transport
,
C.-L.
Tien
,
A.
Majumdar
, and
F. M.
Gerner
, eds.,
Taylor and Francis
, Washington DC pp.
1
94
.
3.
Chen
,
G.
, 1998, “
Phonon Wave Effects on Heat Conduction in Thin Films
,” in
AIAA/ASME Joint Thermophysics and Heat Transfer Conference
.
4.
Chen
,
G.
, 2000, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
1388-0764,
2
, pp.
199
204
.
5.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
6.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
, New York.
7.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Saunders College
, Philadelphia.
8.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
, 1995, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
0021-8979,
77
(
12
), pp.
6686
6694
.
9.
Fushinobu
,
K.
,
Hijikata
,
K.
, and
Majumdar
,
A.
, 1995, “
Heat Generation in Sub-Micron GaAs MESFETs
,”
Proceedings-International Intersociety Electronic Packaging Conference
EEP-Vol.
10-2
,
Advances in Electronic Packaging
, pp.
897
902
.
10.
Fushinobu
,
K.
,
Majumdar
,
A.
, and
Hijikata
,
K.
, 1995, “
Heat Generation and Transport in Submicron Semiconductor Devices
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
25
31
.
11.
Lai
,
J.
, and
Majumdar
,
A.
, 1996, “
Concurrent Thermal and Electrical Modeling of Submicrometer Silicon Devices
,”
J. Appl. Phys.
0021-8979,
79
(
9
), pp.
7353
7361
.
12.
Ju
,
Y. S.
, 1999, “
Microscale Heat Conduction in Integrated Circuits and their Constituent Films
,” Ph.D thesis,
Department of Mechanical Engineering
,
Stanford University
, Stanford, CA.
13.
Sverdrup
,
P. G.
, 2000, “
Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices
,” Ph.D thesis,
Department of Mechanical Engineering
,
Stanford University
, Stanford, CA.
14.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Impact of Heat Source Localization on Conduction Cooling of Silicon-on-Insulator Devices
,” in
International Conference on Modeling and Simulation of Microsystems
.
15.
Sverdrup
,
P. G.
,
Banerjee
,
K.
,
Dai
,
C.
,
Shih
,
W.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2000, “
Sub-Continuum Thermal Simulations of Deep Sub-Micron Devices Under ESD Conditions
,” in
International Conference on Simulation of Semiconductor Processes and Devices
,
IEEE Electron Devices Society
.
16.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistor
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
17.
Pop
,
E.
,
Banerjee
,
K.
,
Sverdrup
,
P. G.
,
Dutton
,
R.
, and
Goodson
,
K. E.
, 2001, “
Localized Heating Effects and Scaling of Sub-0.18Micron CMOS Devices
,” in
IEEE International Electron Devices Meeting
.
18.
Armstrong
,
B. H.
, 1981, “
Two-Fluid Theory of Thermal Conductivity of Dielectric Crystals
,”
Phys. Rev. B
0163-1829,
23
(
2
), pp.
883
899
.
19.
Armstrong
,
B. H.
, 1985, “
N Processes, the Relaxation-Time Approximation, and Lattice Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
32
(
6
), pp.
3381
3390
.
20.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
(
5
), pp.
896
903
.
21.
Narumanchi
,
S. V. J.
, 2003, “
Heat Transport in Sub-Micron Conduction, in Mechanical Engineering
,” Ph.D thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh.
22.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submission Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
946
955
.
23.
Klemens
,
P. G.
, 1958, “
Thermal Conductivity and Lattice Vibrational Modes
,” in
Solid State Physics
,
F.
Seitz
and
D.
Thurnbull
, eds.,
Academic
, New York, pp.
1
98
.
24.
Klemens
,
P. G.
, 1969, “
Theory of Thermal Conductivity of Solids
,” in
Thermal Conductivity
,
R. P.
Tye
, ed.,
Academic Press
, London, pp.
1
68
.
25.
Han
,
Y.-J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
, pp.
6033
6042
.
26.
Balandin
,
A.
, and
Wang
,
K. L.
, 1998, “
Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-standing Semiconductor Quantum Well
,”
Phys. Rev. B
0163-1829,
58
(
3
), pp.
1544
1549
.
27.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
(
6
), pp.
2461
2471
.
28.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films with Thickness of Order 100nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3305
3307
.
29.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
J. Heat Transfer
0022-1481,
120
, pp.
30
36
.
30.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
0021-8979,
91
(
8
), pp.
5079
5088
.
31.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
32.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
(
3
), pp.
605
668
.
33.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
, 1970, “
Thermal Conductivity: Nonmetallic Solids
,” in
Thermophysical Properties of Matter
,
IFI/Plenum
, New York.
34.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor and Francis
, London.
35.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
419
425
.
36.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
313
321
.
37.
Gaskell
,
P. H.
, and
Lau
,
A. K. C.
, 1988, “
Curvature-Compensated Convective Transport: SMART, a New Boundedness-Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
617
641
.
38.
Darwish
,
M. S.
, and
Moukalled
,
F. H.
, 1994, “
Normalized Variable and Space Formulation Methodology for High-Resolution Schemes
,”
Numer. Heat Transfer, Part A
1040-7782,
26
, pp.
79
96
.
39.
Chen
,
G.
, 1997, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
J. Heat Transfer
0022-1481,
119
, pp.
220
229
.
40.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
0163-1829,
57
(
23
), pp.
14958
14973
.
41.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
, 2003, “
Detailed Phonon Generation Simulations via the Monte Carlo Method
,”
Proceedings-ASME Summer Heat Transfer Conference
, Paper No. HT2003-47312.
42.
Duncan
,
A.
,
Ravaioli
,
U.
, and
Jakumeit
,
J.
, 1998, “
Full-Band Monte Carlo Investigation of Carrier Trends in the Scaling of Metal-Oxide-Semiconductor Field-Effect Transistors
,”
IEEE Trans. Electron Devices
0018-9383,
45
, pp.
867
876
.
You do not currently have access to this content.