This paper deals with the transient thermal signal around an engine cylinder in order to propose a new and nonintrusive method of knock detection. Numerical simulations of unsteady heat transfer through the cylinder and inside the coolant flow are carried out to account for heat flux variations due to normal and knocking combustion. The effect of rib roughened surfaces on thermal signal amplification is investigated. The geometric parameters are fixed at Pi/h=10 and w/h=1 with a Reynolds number based on hydraulic diameter of 12,000. The results reveal that square ribs give better performance in term of thermal signal amplification within the fluid. An amplification of the temperature variation up to 20 times higher is found. Finally, flow analysis shows that amplification depends on the position where the thermal signal is collected.

1.
Decker, H., and Gurber, H., 1985, “Knock Control of Gasoline Engines, A Comparison of Solutions and Tendencies, With Special References to Future European Emission Legislation,” SAE Paper No. 850298.
2.
Honig, G., Decker, H., and Rohde, S., 1981, “Electronic Spark Control Systems: Part I, Microcomputer Controlled Ignition System; Part II: Bosh Knock Control,” SAE Paper No. 810059.
3.
Hudson
,
C.
,
Gao
,
X.
, and
Stone
,
R.
,
2001
, “
Knock Measurement for Fuel Evaluation in Spark Ignition Engines
,”
Fuel
,
80
, pp.
395
407
.
4.
Brecq
,
G.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2003
, “
A New Indicator for Knock Detection in Gas SI Engines
,”
Int. J. Therm. Sci.
,
42
, pp.
523
532
.
5.
Syrimis, M., 1996, “Characterization of Knocking Combustion and Heat Transfer in a Spark-Ignition Engine,” Ph.D. thesis, University of Illinois.
6.
Douaud
,
A.
,
1983
, “
Ele´ments d’Analyze du Cliquetis et de ses Effets
,”
Rev. Inst. Fr. Pet.
,
38
, pp.
665
674
.
7.
Enomoto
,
Y.
,
Kitahara
,
N.
, and
Takai
,
M.
,
1994
, “
Heat Losses During Knocking in a Four-Stroke Gasoline Engine
,”
JSME Int. J., Ser. B
,
37
(
3
), pp.
668
676
.
8.
Harigaya, Y., Toda, F., Ohyagi, S., and Tsuji, H., 1989, “Surface Temperature and Wall Heat Flux in a Spark Ignition Engine Under Knocking and Non-Knocking Conditions,” JSAE Paper, pp. 369–378.
9.
Lu, J. H., Ezekoye, D., Liyama, A., Greif, R., and Sawyer, R. F., 1989, “Effect of Knock on Time Resolved Engine Heat Transfer,” SAE Paper No. 890158.
10.
Heywood, J. B., 1988, Internal Combustion Engines Fundamentals, McGraw–Hill, Singapore.
11.
Bellettre, J., and Tazerout, M., 2003, “Numerical Study of Unsteady Heat Transfer Around a Cylinder: Application to Knock Detection in Gas SI Engine,” Proc. Eurotherm Seminar74 Heat Transfer in Unsteady and Transitional Flows, Endhoven, The Netherlands, edited by H. C. de Lange and A. A. Steenhoven, pp. 99–104.
12.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow
,
23
, pp.
750
757
.
13.
Liou
,
T. M.
,
Chen
,
S. H.
, and
Shih
,
K. C.
,
2002
, “
Numerical Simulation of Turbulent Flow Field and Heat Transfer in a Two Dimensional Channel With Periodic Slit Ribs
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4493
4505
.
14.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Conjugate Heat Transfer Predictions in Two Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
23
, pp.
340
345
.
15.
Kim
,
K. Y.
, and
Kim
,
S. S.
,
2002
, “
Shape Optimization of Rib Roughened Surface to Enhance Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
45
, pp.
2719
2727
.
16.
Iacovides
,
H.
,
Kelemenis
,
G.
, and
Raisee
,
M.
,
2003
, “
Flow and Heat Transfer in Straight Cooling Passages With Inclined Ribs on Opposite Walls: An Experimental and Computational Study
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
283
294
.
17.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
ASME J. Fluids Eng.
,
68
, pp.
537
566
.
18.
Launder
,
B. E.
, and
Shima
,
N.
,
1989
, “
Second-Moment Closure for the Near-Wall Sublayer: Development and Application
,”
AIAA J.
,
27
, pp.
1319
1325
.
19.
Makkapati, S., Poe, S., Shaikh, Z., Cross, R., and Mikulec, T., 2002, “Coolant Velocity Correlations in an IC Engine Coolant Jacket,” SAE Paper No. 011203.
20.
Pirotais, F., 2004, “Contribution a` la Mode´lisation du Flux Thermique Disponible pour le Chauffage d’un Habitacle d’Automobile apre`s un De´marrage a` Froid,” PhD thesis, University of Nantes (in French).
21.
Liou
,
T. M.
,
Hwang
,
J. J.
, and
Chen
,
S. H.
,
1993
, “
Simulation and Measurement of Enhanced Turbulent Heat Transfer in a Channel With Periodic Ribs on One Principal Wall
,”
Int. J. Heat Mass Transfer
,
36
, pp.
507
517
.
22.
O’Doherty
,
T.
,
Jolly
,
A. J.
, and
Bates
,
C. J.
,
2001
, “
Optimization of Heat Transfer Enhancement Devices in a Bayonet Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
21
, pp.
19
36
.
23.
Drain, L. E., and Martin, S., 1985, “Two-Component Velocity Measurements of Turbulent Flow in a Ribbed-Wall Flow Channel,” International Conference on Laser Anemometry—Advanced and Application, Manchester, pp. 99–112.
24.
Kays, W., 1966, Convective Heat Transfer, McGraw–Hill, New York.
25.
Ollivier, E., Duma, B., Bellettre, J., and Tazerout, M., 2003, “Knock Detection in Gas Engine by Analysis of Transient Heat Transfer,” International Symposium on Transient Convective Heat and Mass Transfer in Single and Two-Phase Flows, CESME, Turkey, ed., Begell House Inc.
26.
Kilicaslan
,
I.
, and
Sarac
,
H. I.
,
1998
, “
Enhancement of Heat Transfer in Compact Heat Exchanger by Different Type of Rib With Holographic Interferometry
,”
Exp. Therm. Fluid Sci.
,
17
, pp.
339
346
.
27.
Lee
,
C. K.
, and
Abdel-Moneim
,
S. A.
,
2001
, “
Computational Analysis of Heat Transfer in Turbulent Flow Past a Horizontal Surface With Two-Dimensional Ribs
,”
Int. Commun. Heat Mass Transfer
,
21
(
2
), pp.
161
170
.
28.
Bauer, W., Heywood, J. B., Avanessian, O., and Chu, D., 1996, “Flow Characteristics in Intake Port of Spark Ignition Engine by CFD and Transient Gas Temperature Measurement,” SAE Paper No. 961997.
29.
Bourouga, B., Lepaludier, V., and Bardon, J. B., 1998, “In Situ Measurement of Temperature and Surface Flux in Combustion Chamber of Diesel Engine,”Congress of the SFT, Marseille, France, Elsevier, pp. 307–313 (in French).
30.
Wang
,
B.
,
Zhou
,
L.
, and
Peng
,
X.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2665
2672
.
31.
Roy, G. C., Nguyen, C. T., and Comeau, M., 2004, “Electronic Component Cooling Enhancement Using Nanofluids in a Radial Flow Cooling System,” Proc. ASME—ZSIS International Thermal Science Seminar II, ASME, New York, pp. 743–750.
You do not currently have access to this content.