A numerical model is presented in this work that computes the interdependent fields of flow, temperature, and mass fractions in a single tubular solid oxide fuel cell (SOFC). Fuel gas from a pre-reformer is considered to contain H2, CO, CO2,H2O (vapor), and CH4, so reforming and shift reactions in the cell are incorporated. The model uses mixture gas properties of the fuel and oxidant that are functions of the numerically obtained local temperature, pressure, and species concentrations, which are both interdependent and related to the chemical and electrochemical reactions. A discretized network circuit of a tubular SOFC was adopted to account for the Ohmic losses and Joule heating from the current passing around the circumference of the cell to the interconnect. In the iterative computation, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species. Upon convergence of the computation, both local details and the overall performance of the fuel cell are obtained. These numerical results are important in order to better understand the operation of SOFCs.

1.
Gardner
,
F. J.
,
1997
, “
Thermodynamic Processes in Solid Oxide and Other Fuel Cells
,”
Proc. Inst. Mech. Eng.
,
211
(Part A), pp.
367
380
.
2.
Bevc
,
F.
,
1997
, “
Advances in Solid Oxide Fuel Cells and Integrated Power Plant
,”
Proc. Inst. Mech. Eng.
,
211
(Part A), pp.
359
366
.
3.
Singhal
,
S. C.
,
1999
, “
Process in Tubular Solid Oxide Fuel Cell Technology,” S. C. Singhal, and M. Dokiya, eds.
,
Electrochemical Society Proceedings
,
99-19
, pp.
39
51
.
4.
Srinivasan
,
S.
,
Mosdale
,
R.
,
Stevens
,
P.
, and
Yang
,
C.
,
1999
, “
Fuel Cells: Reaching the Era of Clean and Efficient Power Generation in the Twenty-First Century
,”
Annual Review of Energy and the Environment
,
24
, pp.
281
328
.
5.
Joon
,
K.
,
1998
, “
Fuel Cells—a 21st Century Power System
,”
J. Power Sources
,
71
, pp.
12
18
.
6.
Hirano
,
A.
,
Suzuki
,
M.
, and
Ippommatsu
,
M.
,
1992
, “
Evaluation of a New Solid Oxide Fuel Cell System by Non-Isothermal Modeling
,”
J. Electrochem. Soc.
,
139
(
10
), pp.
2744
2751
.
7.
Bessette
,
N. F.
, and
Wepfer
,
W. J.
,
1995
, “
A Mathematical Model of a Tubular Solid Oxide Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
117
, pp.
43
49
.
8.
Haynes
,
C.
, and
Wepfer
,
W. J.
,
2001
, “
Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,”
Int. J. Hydrogen Energy
,
26
, pp.
369
379
.
9.
Campanari
,
S.
,
2001
, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
,
92
, pp.
26
34
.
10.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
,
2000
, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
,
86
, pp.
442
448
.
11.
Costamagna
,
P.
,
Arato
,
E.
,
Antonucci
,
P. L.
, and
Antonucci
,
V.
,
1996
, “
Partial Oxidation of CH4 in Solid Oxide Fuel Cells: Simulation Model of the Electrochemical Reactor and Experimental Validation
,”
Chem. Eng. Sci.
,
51
(
11
), pp.
3013
3018
.
12.
Aguiar
,
P.
,
Chadwick
,
D.
, and
Kershenbaum
,
L.
,
2002
, “
Modeling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
,
57
, pp.
1665
1677
.
13.
Sverdrup, E. F., Warde, C. J., and Glasser, A. D., 1972, From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University of Washington Press, Seattle, WA, p. 255.
14.
Archer, D. H., Elikan, L., and Zahradnik, R. L., 1965, Hydrocarbon Fuel Cell Technology, B. S. Baker, ed., Academic Press, New York, NY, p. 51.
15.
Li
,
P. W.
, and
Suzuki
,
K.
,
2004
, “
Numerical Modeling and Performance Study of a Tubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
151
(
4
), pp.
A548–A557
A548–A557
.
16.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
,
2001
, “
Numerical Analysis of Output Characteristics of Tubular SOFC With Internal Reformer
,”
J. Power Sources
,
101
, pp.
60
71
.
17.
Onuma
,
S.
,
Kaimai
,
A.
,
Kawamura
,
K.
,
Nigara
,
Y.
,
Kawada
,
T.
,
Mizusaki
,
J.
, and
Tagawa
,
H.
,
2000
, “
Influence of Coexisting Gases on the Electrochemical Reaction Rates Between 873 and 1173 K in a CH4-H2O/Pt/YSZ System
,”
Solid State Ionics
,
132
, pp.
309
331
.
18.
Massardo, A. F., and Lubelli, F., 1998, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-T) Part A: Cell Model and Cycle Thermodynamic Analysis,” ASME Paper 98-GT-577, presented at the International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden.
19.
Achenbach
,
E.
, and
Riensche
,
E.
,
1994
, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
,
52
, pp.
283
288
.
20.
Peters
,
R.
,
Dahl
,
R.
,
Kluttgen
,
U.
,
Palm
,
C.
, and
Stolten
,
D.
,
2002
, “
Internal Reforming of Methane in Solid Oxide Fuel Cell Systems
,”
J. Power Sources
106
, pp.
238
244
.
21.
Freni
,
S.
, and
Maggio
,
G.
,
1997
, “
Energy Balance of Different Internal Reforming MCFC Configurations
,”
Int. J. Energy Res.
,
21
, pp.
253
264
.
22.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley & Sons, Inc., New York.
23.
Williams, F. A., 1985, Combustion Theory, Benjamin/Cummings Publishing Co., Redwood City, CA.
24.
Shabbir
,
A.
,
Charles
,
M. P.
, and
Romesh
,
K.
,
1991
, “
Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
138
(
9
), pp.
2712
2718
.
25.
Bessette
,
N. F.
,
Wepfer
,
W. J.
, and
Winnick
,
J.
,
1995
, “
A Mathematical Model of a Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
142
, pp.
792
800
.
26.
Incropera, F. P., and DeWitt, D. P., 1996, Introduction to Heat Transfer, 3rd ed., Wiley, John & Sons, Inc., New York.
27.
Perry, R. H., Green, D. W., and Maloney, J. O., 1984, Perry’s Chemical Engineering Handbook, 6th ed., McGraw Hill Book Co., New York.
28.
Sverdrup
,
E. F.
,
Warde
,
C. J.
, and
Eback
,
R. L.
,
1973
, “
Design of High Temperature Solid-Electrolyte Fuel-Cell Batteries for Maximum Power Output per Unit Volume
,”
Energy Convers.
,
13
, pp.
129
136
.
29.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Opt. (Paris)
,
93
, pp.
130
140
.
30.
Turns, S. R., 1999, Introduction to Combustion: Concepts and Application, 2nd Edition, McGraw-Hill Higher Education, New York.
31.
Eckert, E. R. G., and Drake, R. M., 1959, Heat and Mass Transfer, 2nd Edition, McGraw-Hill, New York.
32.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
33.
Karki
,
K. C.
, and
Patankar
,
S. H.
,
1989
, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations
,”
AIAA J.
,
27
(
9
), pp.
1167
1174
.
34.
Beckermann
,
C.
, and
Smith
,
T. F.
,
1993
, “
Incorporation of Internal Surface Radiant Exchange in the Finite-Volume Method
,”
Numer. Heat Transfer, Part B
,
23
, pp.
127
133
.
35.
Veyo, S. E., and Lundberg, W. L., 1999, “Solid Oxide Fuel Cell Power System Cycles,” ASME Paper No. 99-GT-356.
36.
Campanari, S., and Macchi, E., 1999, “The Combination of SOFC and Micro-Turbine for Civil and Industrial Cogeneration,” ASME Paper No. 99-GT-84.
37.
Tomlins, G. W., and Jaszar, M. P., 1999, “Elevated Pressure Testing of the Siemens Westinghouse Tubular Solid Oxide Fuel Cell,” Proceedings of The 3rd International Fuel Cell Conference, pp. 369–372.
38.
Li
,
P. W.
, and
Chyu
,
M. K.
,
2003
, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
,
124
, pp.
487
498
.
39.
Suzuki, K., Teshima, K., and Kim, J. H., 2000, “Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Cycle for a Distributed Energy Generation System,” Proceedings of the 4th JSME-KSME Thermal Engineering Conference, October 1–6, Kobe, Japan.
40.
Hagiwara, A., Michibata, H., Kimura, A., Jaszcar, M. P., Tomlins, G. W., and Veyo, S. E., 1999, “Tubular Solid Oxide Fuel Cell Life Tests,” Proceedings of The 3rd International Fuel Cell Conference, Nagoya, Japan, pp. 365–368.
You do not currently have access to this content.