Abstract

This paper reviews the active and growing field of thermal processing of materials, with a particular emphasis on the linking of basic research with engineering aspects. In order to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, transportation, and other areas, extensive work has been done on the development of new materials and processing techniques in recent years. Among the materials that have seen intense interest and research activity over the last two decades are semiconductor and optical materials, composites, ceramics, biomaterials, advanced polymers, and specialized alloys. New processing techniques have been developed to improve product quality, reduce cost, and control material properties. However, it is necessary to couple research efforts directed at the fundamental mechanisms that govern materials processing with engineering issues that arise in the process, such as system design and optimization, process feasibility, and selection of operating conditions to achieve desired product characteristics. Many traditional and emerging materials processing applications involve thermal transport, which plays a critical role in the determination of the quality and characteristics of the final product and in the operation, control, and design of the system. This review is directed at the heat and mass transfer phenomena underlying a wide variety of materials processing operations, such as optical fiber manufacture, casting, thin film manufacture, and polymer processing, and at the engineering aspects that arise in actual practical systems. The review outlines the basic and applied considerations in thermal materials processing, available solution techniques, and the effect of the transport on the process, the product and the system. The complexities that are inherent in materials processing, such as large material property changes, complicated and multiple regions, combined heat and mass transfer mechanisms, and complex boundary conditions, are discussed. The governing equations for typical processes, along with important parameters, common simplifications and specialized methods employed to study these processes are outlined. The field of thermal materials processing is quite extensive and only a few important techniques employed for materials processing are considered in detail. The effect of heat and mass transfer on the final product, the nature of the basic problems involved, solution strategies, and engineering issues involved in the area are brought out. The current status and future trends are discussed, along with critical research needs in the area. The coupling between the research on the basic aspects of materials processing and the engineering concerns in practical processes and systems is discussed in detail.

1.
Jaluria, Y., 1998, Design and Optimization of Thermal Systems, McGraw-Hill, New York.
2.
Kalpakjian, S., 1989, Manufacturing Engineering and Technology, Addison-Wesley, Reading, MA.
3.
Szekely, J., 1979, Fluid Flow Phenomena in Metals Processing, Academic Press, New York.
4.
Fenner, R. T., 1979, Principles of Polymer Processing, Chemical Publishing, New York.
5.
Hughel, T. J., and Bolling, G. F., eds., 1971, Solidification, Amer. Soc. Metals, Metals Park, OH.
6.
Li, T., Ed., 1985, Optical Fiber Communications, Vol. 1: Fiber Fabrication, Academic Press, NY.
7.
Poulikakos
,
D.
, ed.,
1996
, “
Transport Phenomena in Materials Processing
,” Adv. Heat Transfer, 18.
8.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
, pp.
1205
1219
.
9.
Jaluria, Y., 1980, Natural Convection Heat and Mass Transfer, Pergamon Press, Oxford, UK.
10.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Taylor and Francis, Philadelphia, PA.
11.
Jaluria, Y., and Torrance, K. E., 2003, Computational Heat Transfer, 2nd ed., Taylor and Francis, New York, NY.
12.
Ramachandran
,
N.
,
Gupta
,
J. P.
, and
Jaluria
,
Y.
,
1982
, “
Thermal and Fluid Flow Effects During Solidification in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
25
, pp.
187
194
.
13.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1988
, “
Developing Laminar Mixed Convection With Solidification in a Vertical Channel
,”
ASME J. Heat Transfer
,
110
, pp.
410
415
.
14.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1993
, “
A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures
,”
Numer. Heat Transfer
,
24B
, pp.
77
105
.
15.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1996
, “
Convection Heat and Mass Transfer in Alloy Solidification
,”
Adv. Heat Transfer
,
28
, pp.
231
338
.
16.
Harper, J. M., 1981, Extrusion of Foods: Volume I, CRD Press, Boca Raton, FL.
17.
Kokini, J. L., Ho, C.-T., and Karwe, M. V., Eds., 1992, Food Extrusion Science and Technology, Marcel Dekker, New York.
18.
Wang
,
S. S.
,
Chiang
,
C. C.
,
Yeh
,
A. I.
,
Zhao
,
B.
, and
Kim
,
I. H.
,
1989
, “
Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents
,”
J. Food. Sci.
,
54
, pp.
1298
1301
.
19.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
20.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
.
21.
Roy Choudhury
,
S.
,
Jaluria
,
Y.
, and
Lee
,
S. H.-K.
,
1999
, “
Generation of Neck-Down Profile for Furnace Drawing of Optical Fiber
,”
Numer. Heat Transfer
,
35
, pp.
1
24
.
22.
Jaluria
,
Y.
,
1992
, “
Transport From Continuously Moving Materials Undergoing Thermal Processing
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
187
245
.
23.
Siegel
,
R.
,
1984
, “
Two-Region Analysis of Interface Shape in Continuous Casting With Superheated Liquid
,”
ASME J. Heat Transfer
,
106
, pp.
506
511
.
24.
Roy Choudhury
,
S.
, and
Jaluria
,
Y.
,
1994
, “
Analytical Solution for the Transient Temperature Distribution in a Moving Rod or Plate of Finite Length With Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
37
, pp.
1193
1205
.
25.
Chiu
,
W. K.-S.
,
Jaluria
,
Y.
, and
Glumac
,
N. C.
,
2000
, “
Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations
,”
Numer. Heat Transfer
,
37
, pp.
113
132
.
26.
Wang
,
Q.
,
Yoo
,
H.
, and
Jaluria
,
Y.
,
2003
, “
Convection in a Horizontal Duct Under Constant and Variable Property Formulations
,”
Int. J. Heat Mass Transfer
,
46
, pp.
297
310
.
27.
Tadmor, Z., and Gogos, C., 1979, Principles of Polymer Processing, Wiley, New York.
28.
Jaluria
,
Y.
,
1996
, “
Heat and Mass Transfer in the Extrusion of Non-Newtonian Materials
,”
Adv. Heat Transfer
,
28
, pp.
145
230
.
29.
Karwe
,
M. V.
, and
Jaluria
,
Y.
,
1990
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Single-Screw Extruder for Non-Newtonian Fluids
,”
Numer. Heat Transfer
,
17
, pp.
167
190
.
30.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1996
, “
Simulation of the Transport Processes in the Neck-Down Region of a Furnace Drawn Optical Fiber
,”
Int. J. Heat Mass Transfer
,
40
, pp.
843
856
.
31.
Sayles
,
R.
, and
Caswell
,
B.
,
1984
, “
A Finite Element Analysis of the Upper Jet Region of a Fiber Drawing Flow Field
,”
Int. J. Heat Mass Transfer
,
27
, pp.
57
67
.
32.
Myers
,
M. R.
,
1989
, “
A Model for Unsteady Analysis of Preform Drawing
,”
AIChE J.
,
35
, pp.
592
602
.
33.
Jaluria
,
Y.
,
1976
, “
Temperature Regulation of a Plastic-Insulated Wire in Radiant Heating
,”
ASME J. Heat Transfer
,
98
, pp.
678
680
.
34.
Beckermann
,
C.
, and
Wang
,
C. Y.
,
1995
, “
Multiphase Scale Modeling of Alloy Solidification
,”
Annu. Rev. Fluid Mech.
,
6
, pp.
115
198
.
35.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
,
1996
, “
Numerical Simulation of Extrusion Cooking of Starchy Materials
,”
J. Food. Eng.
,
30
, pp.
449
467
.
36.
Hanafusa
,
H.
,
Hibino
,
Y.
, and
Yamamoto
,
F.
,
1985
, “
Formation Mechanism of Drawing-Induced E’ Centers in Silica Optical Fibers
,”
J. Appl. Phys.
,
58
(
3
), pp.
1356
1361
.
37.
Yin
,
Z.
, and
Jaluria
,
Y.
,
2000
, “
Neck Down and Thermally Induced Defects in High Speed Optical Fiber Drawing
,”
ASME J. Heat Transfer
,
122
, pp.
351
362
.
38.
Jaluria
,
Y.
,
1984
, “
Numerical Study of the Thermal Processes in a Furnace
,”
Numer. Heat Transfer
,
7
, pp.
211
224
.
39.
Issa
,
J.
,
Yin
,
Z.
,
Polymeropoulos
,
C. E.
, and
Jaluria
,
Y.
,
1996
, “
Temperature Distribution in an Optical Fiber Draw Tower Furnace
,”
J. Mater. Process. Manuf. Sci.
,
4
, pp.
221
232
.
40.
Kwon
,
T. H.
,
Shen
,
S. F.
, and
Wang
,
K. K.
,
1986
, “
Pressure Drop of Polymeric Melts in Conical Converging Flow: Experiments and Predictions
,”
Polym. Eng. Sci.
,
28
, pp.
214
224
.
41.
Lin
,
P.
, and
Jaluria
,
Y.
,
1997
, “
Conjugate Transport in Polymer Melt Flow Through Extrusion Dies
,”
Polym. Eng. Sci.
,
37
, pp.
1582
1596
.
42.
Minkowycz, W. J., and Sparrow, E. M., eds., 1997, Advances in Numerical Heat Transfer, 1, Taylor & Francis, Philadelphia, PA.
43.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Philadelphia, PA.
44.
Leonard, B. P., 1997, “Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms,” in Advances in Numerical Heat Transfer, W. J. Minkowycz and E. M. Sparrow, eds., 1, Taylor & Francis, Philadelphia, PA, pp. 1–57.
45.
Zhu
,
W.
, and
Jaluria
,
Y.
,
2001
, “
Residence Time and Conversion in the Extrusion of Chemically Reactive Materials
,”
Polym. Eng. Sci.
,
41
, pp.
1280
1291
.
46.
Wang
,
Y.
, and
White
,
J. L.
,
1989
, “
Non-Newtonian Flow Modeling in the Screw Region of an Intermeshing Co-Rotating Twin Screw Extruder
,”
J. Non-Newtonian Fluid Mech.
,
32
, pp.
19
38
.
47.
Sastrohartono
,
T.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
,
1994
, “
Numerical Coupling of Multiple Region Simulations to Study Transport in a Twin Screw Extruder
,”
Numer. Heat Transfer
,
25
, pp.
541
557
.
48.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
,
Karwe
,
M. V.
, and
Sernas
,
V.
,
1996
, “
Transport in a Twin-Screw Extruder for the Processing of Polymers
,”
Polym. Eng. Sci.
,
36
, pp.
1531
1540
.
49.
Yin
,
Z.
, and
Jaluria
,
Y.
,
1997
, “
Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace
,”
ASME J. Heat Transfer
,
119
, pp.
597
603
.
50.
Paek
,
U. C.
,
1999
, “
Free Drawing and Polymer Coating of Silica Glass Optical Fibers
,”
ASME J. Heat Transfer
,
121
, pp.
775
788
.
51.
Cheng
,
X.
, and
Jaluria
,
Y.
,
2002
, “
Effect of Draw Furnace Geometry on High-Speed Optical Fiber Manufacturing
,”
Numer. Heat Transfer
,
41
, pp.
757
781
.
52.
Blyler
,
L. L.
, and
DiMarcello
,
F. V.
,
1980
, “
Fiber Drawing, Coating and Jacketing
,”
Proc. IEEE
,
68
, pp.
1194
1198
.
53.
Paek
,
U. C.
,
1986
, “
High Speed High Strength Fiber Coating
,”
J. Lightwave Technol.
,
LT-4
, pp.
1048
1059
.
54.
Ravinutala, S., Rattan, K., Polymeropoulos, C., and Jaluria, Y., 2000, “Dynamic Menisci in a Pressurized Fiber Applicator,” Proc. 49th Int. Wire Cable Symp., Atlantic City, NJ, INCS, Inc., Eatontown, NJ.
55.
Vaskopulos
,
T.
,
Polymeropoulos
,
C. E.
, and
Zebib
,
A.
,
1995
, “
Cooling of Optical Fibers in Aiding and Opposing Forced Gas Flow
,”
Int. J. Heat Mass Transfer
,
18
, pp.
1933
1944
.
56.
Voller, V. R., 1997, “An Overview of Numerical Methods for Solving Phase Change Problems,” in Advances in Numerical Heat Transfer, W. J. Minkowycz and E. M. Sparrow, eds., 1, Taylor & Francis, Philadelphia, PA, pp. 341–380.
57.
Banaszek
,
J.
,
Jaluria
,
Y.
,
Kowalewski
,
T. A.
, and
Rebow
,
M.
,
1999
, “
Semi-Implicit FEM Analysis of Natural Convection in Freezing Water
,”
Numer. Heat Transfer
,
36
, pp.
449
472
.
58.
Lin
,
P.
, and
Jaluria
,
Y.
,
1997
, “
Heat Transfer and Solidification of Polymer Melt Flow in a Channel
,”
Polym. Eng. Sci.
,
37
, pp.
1247
1258
.
59.
Fotiadis
,
D. I.
,
Boekholt
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
,
1990
, “
Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions
,”
J. Cryst. Growth
,
100
, pp.
577
599
.
60.
Yoo
,
H.
, and
Jaluria
,
Y.
,
2002
, “
Thermal Aspects in The Continuous Chemical Vapor Deposition of Silicon
,”
ASME J. Heat Transfer
,
124
, pp.
938
946
.
61.
Eversteyn
,
F. C.
,
Severin
,
P. J. W.
,
Brekel
,
C. H. J.
, and
Peek
,
H. L.
,
1970
, “
A Stagnant Layer Model for the Epitaxial Growth of Silicon From Silane in a Horizontal Reactor
,”
J. Electrochem. Soc.
,
117
, pp.
925
931
.
62.
Mahajan
,
R. L.
, and
Wei
,
C.
,
1991
, “
Buoyancy, Soret, Dufour and Variable Property Effects in Silicon Epitaxy
,”
ASME J. Heat Transfer
,
113
, pp.
688
695
.
63.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
,
2001
, “
Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below
,”
ASME J. Heat Transfer
,
123
, pp.
688
697
.
64.
Ostrach
,
S.
,
1983
, “
Fluid Mechanics in Crystal Growth—The 1982 Freeman Scholar Lecture
,”
J. Fluids Eng.
,
105
, pp.
5
20
.
65.
Prasad
,
V.
,
Zhang
,
H.
, and
Anselmo
,
A. P.
,
1997
, “
Transport Phenomena in Czochralski Crystal Growth Processes
,”
Adv. Heat Transfer
,
30
, pp.
313
435
.
66.
Ostrach
,
S.
,
1982
, “
Low-Gravity Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
313
345
.
67.
Wang
,
G. X.
, and
Prasad
,
V.
,
2000
, “
Rapid Solidification: Fundamentals and Modeling
,”
Annu. Rev. Heat Transfer
,
11
, pp.
207
297
.
68.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1998
, “
A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes
,”
Acta Mater.
,
46
, pp.
4925
4933
.
69.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2929
2945
.
70.
Roache, P. J., 1998, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, New Mexico.
71.
De Vahl Davis, G., and Leonardi, E., eds., 2001, Advances in Computational Heat Transfer II, Begell House Pub., New York, NY.
72.
Esseghir, M., and Sernas, V., 1992, “Experiments on a Single Screw Extruder With a Deep and Highly Curved Screw Channel,” in Food Extrusion Science and Technology, J. L. Kokini, C. T. Ho, and M. V. Karwe, eds., Marcel Dekker, New York, pp. 21–40.
73.
Sastrohartono
,
T.
,
Jaluria
,
Y.
,
Esseghir
,
M.
, and
Sernas
,
V.
,
1995
, “
A Numerical and Experimental Study of Three-Dimensional Transport in the Channel of an Extruder for Polymeric Materials
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1957
1973
.
74.
Sastrohartono
,
T.
,
Esseghir
,
M.
,
Kwon
,
T. H.
, and
Sernas
,
V.
,
1990
, “
Numerical and Experimental Studies of the Flow in the Nip Region of a Partially Intermeshing Co-Rotating Twin Screw Extruder
,”
Polym. Eng. Sci.
,
30
, pp.
1382
1398
.
75.
Bakalis
,
S.
, and
Karwe
,
M. V.
,
1997
, “
Velocity Field in a Twin Screw Extruder
,”
Int. J. Food Sci. Technol.
,
32
, pp.
241
253
.
76.
Paek
,
U. C.
, and
Runk
,
R. B.
,
1978
, “
Physical Behavior of the Neck-Down Region During Furnace Drawing of Silica Fibers
,”
J. Appl. Phys.
,
49
, pp.
4417
4422
.
77.
Paek
,
U. C.
,
Schroeder
,
C. M.
, and
Kurkjian
,
C. R.
,
1988
, “
Determination of the Viscosity of High Silica Glasses During Fibre Drawing
,”
Glass Technol.
,
29
(
4
), pp.
263
266
.
78.
Wolff
,
F.
, and
Viskanta
,
R.
,
1987
, “
Melting of a Pure Metal From a Vertical Wall
,”
Exp. Heat Transfer
,
1
, pp.
17
30
.
79.
Wolff
,
F.
, and
Viskanta
,
R.
,
1988
, “
Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat Mass Transfer
,
31
, pp.
1735
1744
.
80.
Zhu
,
W.
, and
Jaluria
,
Y.
,
2001
, “
Transport Processes and Feasible Operating Domain in a Twin-Screw Polymer Extruder
,”
Polym. Eng. Sci.
,
41
, pp.
107
117
.
81.
Jongbloed
,
H. A.
,
Kiewiet
,
J. A.
,
Van Dijk
,
J. H.
, and
Janssen
,
L. P. B. M.
,
1995
, “
The Self-Wiping Co-Rotating Twin-Screw Extruder as a Polymerization Reactor for Methacrylates
,”
Polym. Eng. Sci.
,
35
, pp.
1569
1579
.
82.
Roy Choudhury
,
S.
, and
Jaluria
,
Y.
,
1998
, “
Practical Aspects in the Thermal Transport During Optical Fiber Drawing
,”
J. Mater. Res.
,
13
, pp.
483
493
.
83.
Cheng, X., and Jaluria, Y., 2003, “Feasible Domain of High Speed Optical Fiber Drawing,” Proc. ASME-JSME Thermal Engg. Jt. Conf., Hawaii, JSME, Tokyo, Japan.
84.
Dianov
,
E. M.
,
Kashin
,
V. V.
,
Perminov
,
S. M.
,
Perminova
,
V. N.
,
Rusanov
,
S. Y.
, and
Sysoev
,
V. K.
,
1988
, “
The Effect of Different Conditions on the Drawing of Fibers From Preforms
,”
Glass Technol.
,
29
(
6
), pp.
258
262
.
85.
Ottino, J. M., 1997, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge, England.
86.
Bejan, A., 1995, Entropy Generation Minimization, CRC Press, Boca Raton, FL.
87.
Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill, New York.
88.
Stoecker, W. F., 1989, Design of Thermal Systems, 3rd ed., McGraw-Hill, New York.
89.
Chiu
,
W. K. S.
,
Jaluria
,
Y.
, and
Glumac
,
N. G.
,
2002
, “
Control of Thin Film Growth in Chemical Vapor Deposition Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
715
724
.
90.
Cheng, X., 2002, “Design and Optimization of the Draw Furnace for High Speed Optical Fiber Drawing,” Ph.D. Thesis, Rutgers Univ., New Brunswick, NJ.
91.
Suh, N. P., 1990, The Principles of Design, Oxford Univ. Press, New York.
92.
Jaluria
,
Y.
, and
Lombardi
,
D.
,
1991
, “
Use of Expert Systems in the Design of Thermal Equipment and Processes
,”
Res. Eng. Des.
,
2
, pp.
239
253
.
93.
Jamalabad
,
V. R.
,
Langrana
,
N. A.
, and
Jaluria
,
Y.
,
1994
, “
Rule-Based Design of a Materials Processing Component
,”
Eng. Comput.
,
10
, pp.
81
94
.
94.
Viswanath, R., 1993, “Modeling, Simulation and Design of Solidification Systems,” Ph.D. Thesis, Rutgers Univ., New Brunswick, NJ.
95.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1991
, “
Knowledge-Based System for the Computer Aided Design of Ingot Casting Processes
,”
Eng. Comput.
,
7, pp.
109
120
.
You do not currently have access to this content.