Finite volume numerical computations are carried out in order to obtain a correlation for free convective heat transfer in large air channels bounded by one isothermal plate and one adiabatic plate. Surface radiation between plates and different inclination angles are considered. The numerical results are verified by means of a post-processing tool to estimate their uncertainty due to discretization. A final validation process is performed by comparing the numerical data to experimental fluid flow and heat transfer data obtained from an ad-hoc experimental setup.

1.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
, pp.
116
123
.
2.
Sparrow
,
E. M.
,
Chrysle
,
G. M.
, and
Azevedo
,
L. F.
,
1984
, “
Observed Flow Reversals and Measured-Predicted Nusselt Numbers for Natural Convections in a One-Sided Heated Vertical Channel
,”
ASME J. Heat Transfer
,
106
, pp.
325
332
.
3.
Azevedo
,
L. F.
, and
Sparrow
,
E. M.
,
1985
, “
Natural Convection in Open-Ended Inclined Channels
,”
ASME J. Heat Transfer
,
107
, pp.
893
901
.
4.
Cadafalch
,
J.
,
Pe´rez-Segarra
,
C. D.
,
Co`nsul
,
R.
, and
Oliva
,
A.
,
2002
, “
Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
124
, pp.
11
21
.
5.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
, pp.
405
413
.
6.
Bejan, A., 1995, Convection Heat Transfer, second edition, Wiley, New York, p. 192.
7.
Pe´rez-Segarra
,
C. D.
,
Oliva
,
A.
,
Costa
,
M.
, and
Escanes
,
F.
,
1995
, “
Numerical Experiments in Turbulent Natural and Mixed Convection in Internal Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
5
, pp.
13
33
.
8.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1975
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transf.
,
19
, pp.
545
551
.
9.
Gaskell
,
P. H.
et al.
,
1988
, “
Comparison of Two Solution Strategies for Use with Higher-Order Discretization Schemes in Fluid Flow Simulation
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
1203
1215
.
10.
Marthur
,
S. R.
, and
Murthy
,
J. Y.
,
1997
, “
Pressure Boundary Conditions for Incompressible Flow Using Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
32
, pp.
283
298
.
11.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill.
12.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
13.
Westerweel
,
J.
,
1994
, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry
,”
Exp. Fluids
,
16
, pp.
236
247
.
14.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1994, Numerical Recipes in C: The Art of Scientific Computing, second edition, Cambridge University Press, New York, pp. 412–420.
You do not currently have access to this content.