Natural convection heat transfer in a tall vertical cavity (aspect ratio = 16.5), with one isothermal vertical cold wall, and eleven alternately unheated and flush-heated sections of equal height on the opposing vertical wall, is experimentally investigated. The flow visualization pictures for the ethylene glycol–filled cavity reveal a flow pattern consisting of primary, secondary, and tertiary flows. The heat transfer data and the flow visualization photographs indicate that the stratification is the primary factor influencing the temperature of the heated sections. This behavior persists for all the runs where the secondary flow cells cover a large vertical extend of the cavity. Based on the analysis of the photographs it is suggested that the turbulent flow should be expected when the local modified Rayleigh number is in the range of 9.3×1011 to 1.9×1012. It is found that discrete flush-mounted heating in the enclosure results in local Nusselt numbers that are nearly the same as those reported for a wide flush-mounted heater on a vertical plate. This is believed to be due to the fact that the present problem is inherently unstable, and the smallest temperature difference between a heated section and the cold wall results in the onset of convection motion.

This content is only available via PDF.
You do not currently have access to this content.