Abstract

Next-generation boundary layer ingesting (BLI) aircraft can achieve significant reductions in fuel burns compared to conventional aircraft. One of the challenges for BLI aircraft is the need for the fan to continuously operate with inlet distortions. However, until now the effect of real BLI distortions on rotating stall remains unclear. In this work, full-annulus unsteady simulations are conducted to analyze the mechanism of rotating stalls in a boundary layer ingesting fan. The complete stall hysteresis loop at BLI distortions is investigated. Similar to the uniform inflow, the fan at the BLI distortions also exhibits the spike-type rotating stalls, and its stall inception is also attributed to the radial vortex structure caused by the shear interaction between the incoming flow and backflow. However, at the BLI distortions, the evolution process of rotating stall is accompanied by the growth and decay of disturbances because of the significant variation of the inflow condition around the whole annulus. Only when the stall disturbance becomes large enough can it propagate circumferentially across the whole annulus to form the full stall cell. In addition, due to the significant decrease in total pressure ratio, the fan at the BLI distortions is easier to exit the rotating stall compared to the uniform inflow. These results enhance the understanding of the rotating stall mechanism not only for BLI fans but also for many turbine engines that suffer from inlet distortions.

References

1.
Hall
,
C. A.
,
Schwartz
,
E.
, and
Hileman
,
J. I.
,
2009
, “
Assessment of Technologies for the Silent Aircraft Initiative
,”
J. Propul. Power
,
25
(
6
), pp.
1153
1162
.10.2514/1.43079
2.
Kirner
,
R.
,
Raffaelli
,
L.
,
Rolt
,
A.
,
Laskaridis
,
P.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2016
, “
An Assessment of Distributed Propulsion: Part B–Advanced Propulsion System Architectures for Blended Wing Body Aircraft Configurations
,”
Aerosp. Sci. Technol.
,
50
, pp.
212
219
.10.1016/j.ast.2015.12.020
3.
Hall
,
D. K.
,
Huang
,
A. C.
,
Uranga
,
A.
,
Greitzer
,
E. M.
,
Drela
,
M.
, and
Sato
,
S.
,
2017
, “
Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
,”
J. Propul. Power
,
33
(
5
), pp.
1118
1129
.10.2514/1.B36321
4.
Menegozzo
,
L.
, and
Benini
,
E.
,
2020
, “
Boundary Layer Ingestion Propulsion: A Review on Numerical Modeling
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
120801
.10.1115/1.4048174
5.
Steiner
,
H.
,
Seitz
,
A.
,
Wieczorek
,
K.
,
Plötner
,
K.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2012
, “
Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems
,”
28th International Congress of the Aeronautical Sciences
,
Brisbane, Australia
, Sept. 23–28, Paper No. ICAS 2012-1.7.5.https://www.researchgate.net/publication/274705623_Multi-disciplinary_Design_and_Feasibility_Study_of_Distributed_Propulsion_Systems
6.
Corte
,
B. D.
,
Sluis
,
M.
,
Veldhuis
,
L. L. M.
, and
Rao
,
A. G.
,
2021
, “
Power Balance Analysis Experiments on an Axisymmetric Fuselage With an Integrated Boundary-Layer-Ingesting Fan
,”
AIAA J.
,
59
(
12
), pp.
5211
5224
.10.2514/1.J060570
7.
Corte
,
B. D.
,
Sluis
,
M.
,
Rao
,
A. G.
, and
Veldhuis
,
L. L. M.
,
2022
, “
Aerodynamic Performance of an Aircraft With Aft-Fuselage Boundary-Layer-Ingestion Propulsion
,”
J. Aircr.
,
59
(
4
), pp.
1054
1070
.10.2514/1.C036596
8.
Moirou
,
N. G.
,
Sanders
,
D. S.
, and
Laskaridis
,
P.
,
2023
, “
Advancements and Prospects of Boundary Layer Ingestion Propulsion Concepts
,”
Prog. Aeosp. Sci.
,
138
, p.
100897
.10.1016/j.paerosci.2023.100897
9.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S. A.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.10.1115/1.4054035
10.
Lu
,
H. N.
,
Yang
,
Z.
,
Pan
,
T. Y.
, and
Li
,
Q. S.
,
2019
, “
Non-Uniform Stator Loss Reduction Design Strategy in a Transonic Axial-Flow Compressor Stage Under Inflow Distortion
,”
Aerosp. Sci. Technol.
,
92
, pp.
347
362
.10.1016/j.ast.2019.06.015
11.
Yu
,
J. Y.
,
Fu
,
W. G.
,
Wang
,
W. J.
, and
Sun
,
P.
,
2023
, “
Non-Axisymmetric Design and Flow Field Analysis of Boundary Layer Ingesting Fans
,”
Aerosp. Sci. Technol.
,
140
, p.
108429
.10.1016/j.ast.2023.108429
12.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
13.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.10.1115/1.2927406
14.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
15.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
16.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
199
211
.10.1115/1.3446139
17.
Weichert
,
S.
, and
Day
,
I.
,
2014
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
ASME J. Turbomach.
,
136
(
5
), p.
051006
.10.1115/1.4025166
18.
Song
,
M. R.
,
Yang
,
B.
,
Wang
,
Y. H.
,
Zhou
,
R.
, and
Li
,
Z. X.
,
2022
, “
Analysis on Spike-Type Rotating Stall in Transonic Axial Compressor by Dynamic Mode Decomposition
,”
Aerosp. Sci. Technol.
,
131
, p.
108008
.10.1016/j.ast.2022.108008
19.
Zhang
,
W. Q.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speeds
,”
Aerosp. Sci. Technol.
,
98
, p.
105668
.10.1016/j.ast.2019.105668
20.
Zhang
,
W. Q.
, and
Vahdati
,
M.
,
2020
, “
Stall and Recovery Process of a Transonic Fan With and Without Inlet Distortion
,”
ASME J. Turbomach.
,
142
(
1
), p.
011003
.10.1115/1.4045552
21.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.10.1115/1.4028494
22.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.10.1115/1.4042250
23.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low-Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.10.1115/1.4042731
24.
Kim
,
S.
,
Choi
,
J.
,
Gunn
,
E.
,
Brandvik
,
T.
, and
Kang
,
Y. S.
,
2022
, “
Stall Inception in a Compressor With Subsonic, Transonic, and Supersonic Inlet Conditions
,”
J. Propul. Power
,
38
(
3
), pp.
359
369
.10.2514/1.B38484
25.
Reid
,
C.
,
1969
, “
The Response of Axial Flow Compressors to Intake Flow Distortion
,”
ASME
Paper No. 69-GT-29.10.1115/69-GT-29
26.
Li
,
Y. H.
,
Du
,
J.
,
Li
,
J. C.
,
Liu
,
Y.
,
Ba
,
D.
,
Zhang
,
M.
, and
Zhang
,
H. W.
,
2025
, “
Optimized Casing Treatment to Improve Stall Margin Under Circumferential Pressure Distortion in a High-Speed Axial Flow Fan
,”
ASME J. Turbomach.
,
147
(
1
), p.
011012
.10.1115/1.4064695
27.
Li
,
J. C.
,
Du
,
J.
,
Liu
,
Y.
,
Zhang
,
H. W.
, and
Nie
,
C. Q.
,
2020
, “
Effect of Inlet Radial Distortion on Aerodynamic Stability in a Multi-Stage Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
105
, p.
105886
.10.1016/j.ast.2020.105886
28.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E. J.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
141
(
9
), p.
091007
.10.1115/1.4043644
29.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2018
, “
Effect of Inlet Distortion Features on Transonic Fan Rotor Stall
,”
ASME J. Turbomach.
,
140
(
7
), p.
071008
.10.1115/1.4040030
30.
Castillo Pardo
,
A.
, and
Hall
,
C. A.
,
2022
, “
Effects of Sideslip Direction on a Rear Fuselage Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
144
(
12
), p.
121012
.10.1115/1.4055385
31.
Deng
,
H. F.
,
Xia
,
K. L.
,
Qiang
,
X. Q.
,
Zhu
,
M. M.
,
Teng
,
J. F.
, and
Li
,
H. H.
,
2023
, “
Investigation on the Inflow Distortion of a Propulsive Fuselage Aircraft and Its Impact on the Propulsion Fan Performance
,”
Phys. Fluids
,
35
(
5
), p.
057107
.10.1063/5.0147912
32.
Choi
,
M.
, and
Vahdati
,
M.
,
2011
, “
Recovery Process From Rotating Stall in a Fan
,”
J. Propul. Power
,
27
(
6
), pp.
1161
1168
.10.2514/1.46847
33.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” NASA, Washington, DC, Report No.
NASA-TP-2879.
https://ntrs.nasa.gov/citations/19900001929
34.
Zhou
,
D.
,
Lu
,
Z. L.
,
Guo
,
T. Q.
, and
Chen
,
G. P.
,
2021
, “
Aeroelastic Prediction and Analysis for a Transonic Fan Rotor With the ‘‘Hot” Blade Shape
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
50
61
.10.1016/j.cja.2020.10.018
35.
Sun
,
W.
,
2023
, “
Assessment of Advanced RANS Turbulence Models for Prediction of Complex Flows in Compressors
,”
Chin. J. Aeronaut.
,
36
(
9
), pp.
162
177
.10.1016/j.cja.2023.06.007
36.
Li
,
X.
,
Meng
,
T. T.
,
Li
,
W. W.
,
Zhou
,
L.
, and
Ji
,
L. C.
,
2023
, “Aerodynamic Adjoint Optimization of Turbomachinery With Direct Control on Blade Design Parameters,” Chin. J. Aeronaut.,
36
(
11
), pp.
119
134
.10.1016/j.cja.2023.09.022
37.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.10.1115/1.1861912
38.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behavior of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
(
3
), p.
031017
.10.1115/1.2777188
39.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.10.1115/1.4003850
40.
Grosvenor
,
A. D.
,
2007
, “
RANS Prediction of Transonic Compressive Rotor Performance Near Stall
,”
ASME
Paper No. GT2007-27691.10.1115/GT2007-27691
41.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
42.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2001
, “
Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
123
(
1
), pp.
24
30
.10.1115/1.1326085
43.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.10.1115/1.4007570
44.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME J. Fluids Eng.
,
77
(
4
), pp.
455
467
.10.1115/1.4014389
You do not currently have access to this content.