Abstract

Centrifugal compressors play a critical role in various industrial applications, and understanding their operational behavior, especially during surge conditions, is essential for enhancing efficiency and reliability. This study investigates surge transitions in centrifugal compressors by employing a comprehensive approach that integrates dynamic mass flow rate and pressure measurements together with dynamic structural response data. To gain insight into the transition from the stable to the unstable region of the compressor, an extensive experimental analysis on a centrifugal compressor was conducted. The activity involves measurements used to characterize and identify the behavior of the compressor in correspondence of surge inception conditions. Frequency and time–frequency data analysis techniques have been employed to examine the inflow pressure and the anemometric signal. The purpose is to identify their characteristics and define the compressor operation as stable or unstable. Synchronous averages, applied in the time domain, have proven to be effective for detecting incipient surge conditions. Additionally, statistical techniques, such as variance and spectral kurtosis (SK), have been utilized for the detection in signals with strong additive noise and nondeterministic contents. A method for system identification in deep surge is introduced, particularly focusing on the correlation between the compressor circuit geometries and the operating conditions of the turbocharger. This approach enhances the diagnostic capability of the monitoring system by providing a better knowledge of surge occurrence. The paper is aimed to provide information for the development of control strategies and predictive maintenance protocols to mitigate surge-related issues.

References

1.
Sheikhbeigi
,
B.
, and
Ghofrani
,
M. B.
,
2007
, “
Thermodynamic and Environmental Consideration of Advanced Gas Turbine Cycles With Reheat and Recuperator
,”
Int. J. Environ. Sci. Technol.
,
4
(
2
), pp.
253
262
.10.1007/BF03326282
2.
Blanco-Patiño
,
D. F.
,
Niño-Navia
,
J.
,
Garcia-Sepulveda
,
J. I.
, and
Nieto-Londoño
,
C.
,
2023
, “
Performance Prediction of a Centrifugal Compressor for a Cogeneration Microturbine
,”
Int. J. Thermofluids
,
17
, p.
100272
.10.1016/j.ijft.2022.100272
3.
Lai
,
F. Y.
,
Sun
,
B.-G.
,
Xiao
,
G.
,
Luo
,
Q. H.
, and
Bao
,
L. Z.
,
2023
, “
Research on Optimizing Turbo-Matching of a Large-Displacement PFI Hydrogen Engine to Achieve High-Power Performance
,”
Int. J. Hydrogen Energy
,
48
(
97
), pp.
38508
38520
.10.1016/j.ijhydene.2023.06.104
4.
Stemmermann
,
J.
,
Reymond
,
L. M.
,
Geilich
,
M.
, and
Jeschke
,
P.
,
2023
, “
Investigation of the Stability and Surge Limit in an Industrial Centrifugal Compressor With Variable Inlet Guide Vanes
,”
ASME
Paper No. GT2023-101626.10.1115/GT2023-101626
5.
Jana
,
K.
,
Ray
,
A.
,
Majoumerd
,
M. M.
,
Assadi
,
M.
, and
De
,
S.
,
2017
, “
Polygeneration as a Future Sustainable Energy Solution—A Comprehensive Review
,”
Appl. Energy
,
202
, pp.
88
111
.10.1016/j.apenergy.2017.05.129
6.
Rovense
,
F.
,
Sebastián
,
A.
,
Abbas
,
R.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2023
, “
Performance Map Analysis of a Solar-Driven and Fully Unfired Closed-Cycle Micro Gas Turbine
,”
Energy
,
263
, p.
125778
.10.1016/j.energy.2022.125778
7.
Reale
,
F.
, and
Sannino
,
R.
,
2021
, “
Water and Steam Injection in Micro Gas Turbine Supplied by Hydrogen Enriched Fuels: Numerical Investigation and Performance Analysis
,”
Int. J. Hydrogen Energy
,
46
(
47
), pp.
24366
24381
.10.1016/j.ijhydene.2021.04.169
8.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control Using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.10.1016/j.apenergy.2015.12.094
9.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2014
, “
Fuel Cell-Gas Turbine Hybrid System Design Part II: Dynamics and Control
,”
J. Power Sources
,
254
, pp.
126
136
.10.1016/j.jpowsour.2013.11.123
10.
Azizi
,
M. A.
, and
Brouwer
,
J.
,
2017
, “
Stall/Surge Dynamics of a Multi-Stage Air Compressor in Response to a Load Transient of a Hybrid Solid Oxide Fuel Cell-Gas Turbine System
,”
J. Power Sources
,
365
, pp.
408
418
.10.1016/j.jpowsour.2017.09.010
11.
Marelli
,
S.
, and
Usai
,
V.
,
2023
, “
Experimental Investigation on Surge Phenomena in Small Centrifugal Compressors
,”
15th International Conference on Turbochargers and Turbocharging
, Twickenham, London, UK, May 16–17, pp.
3
17
.https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003429746-1/experimental-investigation-surge-phenomena-small-centrifugal-compressors-marelli-usai
12.
Biliotti
,
D.
,
Bianchini
,
A.
,
Vannini
,
G.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p.
021002
.10.1115/1.4028246
13.
Brin
,
J.
, and
Waldron
,
T.
,
2023
, “
Analysis of Boosting Architectures for Hydrogen Internal Combustion Engines
,”
SAE
Paper No. 2023-01-0411.10.4271/2023-01-0411
14.
Onorati
,
A.
,
Payri
,
R.
,
Vaglieco
,
B. M.
,
Agarwal
,
A. K.
,
Bae
,
C.
,
Bruneaux
,
G.
, and
Canakci
,
M.
, et al.,
2022
, “
The Role of Hydrogen for Future Internal Combustion Engines
,”
Int. J. Engine Res.
,
23
(
4
), pp.
529
540
.10.1177/14680874221081947
15.
Wei
,
H.
,
Hu
,
Z.
,
Ma
,
J.
,
Ma
,
W.
,
Yuan
,
S.
,
Hu
,
Y.
,
Hu
,
K.
,
Zhou
,
L.
, and
Wei
,
H.
,
2023
, “
Experimental Study of Thermal Efficiency and NOx Emission of Turbocharged Direct Injection Hydrogen Engine Based on a High Injection Pressure
,”
Int. J. Hydrogen Energy
,
48
(
34
), pp.
12905
12916
.10.1016/j.ijhydene.2022.12.031
16.
Barrera-Medrano
,
M. E.
,
Newton
,
P.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Tomita
,
I.
, and
Ibaraki
,
S.
,
2017
, “
Effect of Exit Pressure Pulsation on the Performance and Stability Limit of a Turbocharger Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052601
.10.1115/1.4034689
17.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Tiseira
,
A.
,
2008
, “
Experiments and Modelling of Surge in Small Centrifugal Compressor for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
818
826
.10.1016/j.expthermflusci.2007.10.001
18.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
19.
Marelli
,
S.
,
Silvestri
,
P.
,
Usai
,
V.
, and
Capobianco
,
M.
,
2019
, “
Incipient Surge Detection in Automotive Turbocharger Compressors
,”
SAE
Paper No. 2019-24-0186.10.4271/2019-24-0186
20.
Silvestri
,
P.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2021
, “
Incipient Surge Analysis in Time and Frequency Domain for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101020
.10.1115/1.4051956
21.
Marelli
,
S.
,
Usai
,
V.
,
Cordalonga
,
C.
, and
Capobianco
,
M.
,
2022
, “
An Innovative Measurement Technique for the Direct Evaluation of the Isentropic Efficiency of Turbocharger Turbines
,”
ASME
Paper No. GT2022-82463.10.1115/GT2022-82463
22.
Marelli
,
S.
, and
Usai
,
V.
,
2023
, “
Evaluation of the Transient Performance of a Two-Stage Hybrid Boosting System for Spark Ignition Engines
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
, epub.10.1177/09544070231209082
23.
Cordalonga
,
C.
,
Marelli
,
S.
,
Usai
,
V.
, and
Capobianco
,
M.
,
2023
, “
Indirect Assessment of Isentropic Efficiency in Turbocharger Turbines Via Mechanical Efficiency Evaluation Under Quasi-Adiabatic Test
,”
SAE
Paper No. 2023-24-0121.10.4271/2023-24-0121
24.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1999
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterizing Non Stationary Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
282
307
.10.1016/j.ymssp.2004.09.001
26.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
.10.1016/j.ymssp.2004.09.002
27.
Antoni
,
J.
,
2007
, “
Fast Computation of the Kurtogram for the Detection of Transient Faults
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
108
124
.10.1016/j.ymssp.2005.12.002
28.
Barszcz
,
T.
, and
Randall
,
R. B.
,
2009
, “
Application of Spectral Kurtosis for Detection of a Tooth Crack in the Planetary Gear of a Wind Turbine
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1352
1365
.10.1016/j.ymssp.2008.07.019
29.
Silvestri
,
P.
,
Marelli
,
S.
, and
Usai
,
V.
,
2023
, “
Experimental Investigation on the Vibrational and Fluid Dynamics Behaviour of a Turbocharger Compressor in the Transition to Surge Operation
,”
E3S Web Conf.
,
414
, p.
02016
.10.1051/e3sconf/202341402016
30.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.10.1115/1.1771686
31.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
.10.1115/1.2929146
32.
Hagino
,
N.
,
Uda
,
K.
, and
Kashiwabara
,
Y.
,
2003
, “
Prediction and Active Control of Surge Inception of a Centrifugal Compressor
,”
AIAA
Paper No. 2005-4019.10.2514/6.2005-4019
33.
Silvestri
,
P.
,
Du Haut Champ
,
C. A. N. M.
,
Reggio
,
F.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2023
, “
Vibro-Acoustic Responses and Pressure Signal Analysis for Early Surge Detection in a Turbocharger Compressor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
10
), p.
101012
.10.1115/1.4063279
34.
Peeters
,
B.
, and
De Roeck
,
G.
,
2001
, “
Stochastic System Identification for Operational Modal Analysis: A Review
,”
ASME J. Dyn. Syst., Meas. Control
,
123
(
4
), pp.
659
667
.10.1115/1.1410370
35.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
36.
He
,
Q.
,
Yan
,
R.
,
Kong
,
F.
, and
Du
,
R.
,
2009
, “
Machine Condition Monitoring Using Principal Component Representations
,”
Mech. Syst. Signal Process.
,
23
(
2
), pp.
446
466
.10.1016/j.ymssp.2008.03.010
37.
Bellino
,
A.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Marchesiello
,
S.
,
2010
, “
PCA-Based Detection of Damage in Time-Varying Systems
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2250
2260
.10.1016/j.ymssp.2010.04.009
38.
Jaffel
,
I.
,
Taouali
,
O.
,
Elaissi
,
E.
, and
Messaoud
,
H.
,
2014
, “
A New Online Fault Detection Method Based on PCA Technique
,”
IMA J. Math. Control Inf.
,
31
(
4
), pp.
487
499
.10.1093/imamci/dnt025
39.
Ding
,
S.
,
Zhang
,
P.
,
Ding
,
E.
,
Naik
,
A.
,
Deng
,
P.
, and
Gui
,
W.
,
2010
, “
On the Application of PCA Technique to Fault Diagnosis
,”
Tsinghua Sci. Technol.
,
15
(
2
), pp.
138
144
.10.1016/S1007-0214(10)70043-2
40.
Alsuwian
,
T.
,
Amin
,
A. A.
,
Iqbal
,
M. S.
, and
Maqsood
,
M. T.
,
2023
, “
A Review of Anti-Surge Control Systems of Compressors and Advanced Fault-Tolerant Control Techniques for Integration Perspective
,”
Heliyon
,
9
(
9
), p.
e19557
.10.1016/j.heliyon.2023.e19557
41.
Xenos, D. P., Cicciotti
,
M.
, Kopanos, G. M.,
Bouaswaig
,
A. E. F.
, Kahrs, O.,
Martinez-Botas
,
R.
, and Thornhill, N. F.,
2015
, “
Optimization of a Network of Compressors in Parallel: Real Time Optimization (RTO) of Compressors in Chemical Plants—An Industrial Case Study
,”
Appl. Energy
, 144, pp.
51
63
.10.1016/j.apenergy.2015.01.010
You do not currently have access to this content.