Abstract

The dynamic characteristic of a rotor-support system plays a crucial role in the operational efficiency and longevity of rotating machinery such as gas turbines. Traditional support structures with the fixed-parameter elastic stiffness have difficulties in adapting to the diverse and complex working conditions of flexible rotating machinery, particularly those that pass through multiple critical speeds. To address rotor resonance and enhance structural reliability, an innovative adjustable elastic support (AES) structure designed to improve the mechanical adaptability of rotors across various speed ranges is investigated in this paper. The AES structure is built upon the conventional squirrel cage elastic support by incorporating a stepper motor. By adjusting the rotation angle of the motor, the effective length of the cage bar can be modified, allowing real-time changes in the support state during rotor operation. This mechanism enables seamless transitions among multiple states: a constant stiffness elastic support, a separate state, or a variable stiffness dynamic absorber that modulates frequencies in real-time by altering the cage bar length. This dynamic capability effectively suppresses resonance peaks caused by mass imbalances. The design and implementation of the AES structure, along with a speed feedback-based adjustment scheme to accommodate the rotor's dynamic characteristics, are discussed. Experimental validation of a multisupport flexible rotor system demonstrates that a maximum vibration can be reduced up to 75%, highlighting its promising potential for engineering applications.

References

1.
Borges
,
J. M.
,
Silva
,
A. A.
,
de Araújo
,
C. J.
,
Pimentel
,
R. L.
,
de Aquino
,
A. S.
,
Senko
,
R.
, and
dos Reis
,
R. P.
,
2018
, “
On the Active Control of a Rotor-Bearing System Using Shape Memory Alloy Actuators: An Experimental Analysis
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
5
), p.
269
.10.1007/s40430-018-1175-8
2.
Alves
,
M. T. S.
,
Steffen
,
V.
, Jr.
,
Castro dos Santos
,
M.
,
Savi
,
M. A.
,
Enemark
,
S.
, and
Santos
,
I. F.
,
2018
, “
Vibration Control of Flexible Rotor Suspended by Shape Memory Alloy Wires
,”
J. Intell. Mater. Syst. Struct.
,
29
(
11
), pp.
2309
2323
.10.1177/1045389X18758179
3.
Jin
,
F.
,
Zang
,
C.
,
Xing
,
G.
,
Ma
,
Y.
,
Yuan
,
S.
, and
Jia
,
Z.
,
2024
, “
Resonant Peak Reduction of a Rotor System Based on Gradually Variable Stiffness of Supports With Shape Memory Alloy Springs
,”
J. Sound Vib.
,
591
, p.
118626
.10.1016/j.jsv.2024.118626
4.
Shao
,
X.
,
Wang
,
W.
,
Li
,
W.
, and
Li
,
Q.
,
2021
, “
Active Fast Vibration Control of Rotating Machinery Via a Novel Electromagnetic Actuator
,”
Struct. Control Health Monit.
,
28
(
5
), pp.
1545
2255
.10.1002/stc.2707
5.
Li
,
M. M.
,
Ma
,
L. L.
,
Wu
,
C. G.
, and
Zhu
,
R. P.
,
2020
, “
Study on the Vibration Active Control of Three-Support Shafting With Smart Spring While Accelerating Over the Critical Speed
,”
Appl. Sci.
,
10
(
17
), p.
6100
.10.3390/app10176100
6.
Thearle
,
E. L.
,
1932
, “
A New Type of Dynamic-Balancing Machine
,”
ASME J. Fluids Eng.
,
54
(
2
), pp.
131
140
.10.1115/1.4021772
7.
Ishida
,
Y.
,
Matsuura
,
T.
, and
Long Zhang
,
X.
,
2012
, “
Efficiency Improvement of an Automatic Ball Balancer
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021012
.10.1115/1.4005013
8.
Ishida
,
Y.
,
2012
, “
Recent Development of the Passive Vibration Control Method
,”
Mech. Syst. Signal Process.
,
29
, pp.
2
18
.10.1016/j.ymssp.2011.12.005
9.
Ishida
,
Y.
, and
Liu
,
J.
,
2008
, “
Vibration Suppression of Rotating Machinery Utilizing Discontinuous Spring Characteristics (Stationary and Nonstationary Vibrations)
,”
ASME J. Vib. Acoust.
,
130
(
3
), p.
031001
.10.1115/1.2889919
10.
Ishida
,
Y.
, and
Liu
,
J.
,
2010
, “
Elimination of Unstable Ranges of Rotors Utilizing Discontinuous Spring Characteristics: An Asymmetrical Shaft System, an Asymmetrical Rotor System, and a Rotor System With Liquid
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011011
.10.1115/1.4000842
11.
Zhang
,
L.
,
Xu
,
H.
,
Zhang
,
S.
, and
Pei
,
S.
,
2020
, “
A Radial Clearance Adjustable Bearing Reduces the Vibration Response of the Rotor System During Acceleration
,”
Tribol. Int.
,
144
, p.
106112
.10.1016/j.triboint.2019.106112
12.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2014
, “
Vibration Quenching in a Large Scale Rotor-Bearing System Using Journal Bearings With Variable Geometry
,”
J. Sound Vib.
,
333
(
7
), pp.
2087
2099
.10.1016/j.jsv.2013.11.034
13.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2012
, “
A Journal Bearing With Variable Geometry for the Reduction of the Maximum Amplitude During Passage Through Resonance
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061005
.10.1115/1.4007242
14.
Tawfik
,
M. A.
,
2020
, “
Real-Time Vibration Control of Rotor-Bearing System Based on Artificial Neural Networks and Active Support Stiffness
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
10
(
6
), pp.
2305
2310
.10.18517/ijaseit.10.6.13377
15.
Liu
,
Y.
,
2007
, “
Review of Passive Dynamic Vibration Absorbers
,”
J. Mech. Eng.
,
43
(
6
), pp.
14
21
.10.3901/JME.2007.03.014
16.
Fang
,
S. O. N. G.
,
Hai
,
S.
, and
Bo
,
S.
,
2007
, “
Control of Rotor Unbalance Vibration With Magnetic Dynamic Absorber
,”
2007 IEEE ICCA
, Guangzhou, China, May 30–June 1, pp.
329
331
.10.1109/ICCA.2007.4376373
17.
Hu
,
H. L.
, and
He
,
L. D.
,
2017
, “
Online Control of Critical Speed Vibrations of a Single-Span Rotor by a Rotor Dynamic Vibration Absorber at Different Installation Positions
,”
J. Mech. Sci. Technol.
,
31
(
5
), pp.
2075
2081
.10.1007/s12206-017-0404-x
18.
Yao
,
H.
,
Wang
,
T.
,
Wen
,
B.
, and
Qiu
,
B.
,
2018
, “
A Tunable Dynamic Vibration Absorber for Unbalanced Rotor System
,”
J. Mech. Sci. Technol.
,
32
(
4
), pp.
1519
1528
.10.1007/s12206-018-0305-7
19.
Nguyen
,
D. C.
,
2020
, “
Vibration Control of a Rotating Shaft by Passive Mass-Spring-Disc Dynamic Vibration Absorber
,”
Arch. Mech. Eng.
,
67
(
3
), pp.
279
297
.10.24425/ame.2020.131693
You do not currently have access to this content.