Abstract

The present study discusses the effect of various flow control methods implemented to develop an intermediate turbine duct (ITD), providing a continuous flow path between the contraction duct of the wind tunnel and the annular sector cascade (ASC) test section to deliver the required flow. The S-shaped diverging passage of the ITD with continuously increasing mean radius imposes a major challenge to achieving the required inlet flow angle with periodicity at the entry of the ASC. The numerical study was performed in ansyscfx to analyze the effect of active and passive flow control methods on the ITD exit flow delivered to the ASC test section. It was found that inlet guide vanes (IGVs), incorporated within the ITD as a passive flow control method, direct the flow through ITD, and approximately required inlet flow condition with reasonable periodicity was achieved at the entry of the ASC test section. However, the opening slot on the casing endwall, an active flow control method, shows the adverse effect on the flow angle distribution at the entry of the ASC test section. The change in axial spacing between IGVs and the test vane cascade shows a negligible effect on the cascade entry flow field. The experimental flow field measurement performed using a five-hole pressure probe showed that IGVs successfully directed the flow through the ITD, precisely meeting the requirements at the test section. The surface oil flow visualization confirms the formation of various flow features captured in the computational study.

References

1.
Doran
,
P.
,
Guevremont
,
G.
,
Vlasic
,
E.
, and
Moustapha
,
H.
,
2018
, “
Gas-Path Optimization Using Turbine Aerodynamics Meanline and Design Exploration
,” Proceedings of Global Power and Propulsion Society,
Montreal, QC, Canada
, May 7–9, Paper No.
GPPS-2018-0014
.https://www.semanticscholar.org/paper/Gas-path-optimization-using-turbine-aerodynamics-Doran-Vlasic/80d49d48e81ab3344b13e9a259b8ea06b5f4ab1f
2.
Zou
,
Z.
,
Wang
,
S.
,
Liu
,
H.
, and
Zhang
,
W.
,
2018
,
Axial Turbine Aerodynamics for Aero-Engines
,
Springer
,
Singapore
.
3.
Roy-Aikins
,
J. E. A.
,
1990
, “
Considerations for the Use of Variable Geometry in Gas Turbines
,”
ASME
Paper No. 90-GT-271.10.1115/90-GT-271
4.
Karstensen
,
K. W.
, and
Wiggins
,
J. O.
,
1990
, “
A Variable-Geometry Power Turbine for Marine Gas Turbines
,”
ASME J. Turbomach.
,
112
(
2
), pp.
165
174
.10.1115/1.2927629
5.
Keith
,
A. L.
,
1970
, “
Effects of Variable Turbine Area on Subsonic Cruise Performance of Turbojets Designed for Supersonic Application
,” NASA,
Hampton, VA
, Report No.
NASA-TN-D-5962
.https://ntrs.nasa.gov/api/citations/19700032694/downloads/19700032694.pdf
6.
Moffitt
,
T. P.
,
Whitney
,
W. J.
, and
Schum
,
H. J.
,
1969
, “
Performance of a Single-Stage Turbine as Affected by Variable Statorarea
,”
AIAA
Paper No. 69-525.10.2514/6.69-525
7.
Rahnke
,
C. J.
,
1969
, “
The Variable-Geometry Power Turbine
,”
SAE
Paper No. 690031.10.4271/690031
8.
Razinsky
,
E. H.
, and
Kuziak
,
W. R.
,
1977
, “
Aerothermodynamic Performance of a Variable Nozzle Power Turbine Stage for an Automotive Gas Turbine
,”
ASME J. Eng. Power
,
99
(
4
), pp.
587
592
.10.1115/1.3446555
9.
Leach
,
K.
,
Thulin
,
R.
, and
Howe
,
D.
,
1982
, “
Energy Efficient Engine Turbine Intermediate Case and Low Pressure Turbine Component Test Hardware Detailed Design Report
,” NASA,
Cleveland, OH
, Report No.
NASA-CR-167973
.https://ntrs.nasa.gov/citations/19840020720
10.
Povey
,
T.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
,
2007
, “
On a Novel Annular Sector Cascade Technique
,”
ASME J. Turbomach.
,
129
(
1
), pp.
175
183
.10.1115/1.2372766
11.
El-Batsh
,
H. M.
,
2012
, “
Effect of the Radial Pressure Gradient on the Secondary Flow Generated in an Annular Turbine Cascade
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
14
.10.1155/2012/509209
12.
Vogt
,
D.
,
2005
, “
Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter
,”
Ph.D. thesis
,
KTH Royal Institute of Technology, Public University
, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:7902/FULLTEXT01.pdf
13.
Bhavsar
,
H.
, and
Mistry
,
C. S.
,
2024
, “
Innovative Approach for Design and Development of Annular Sector Cascade Tunnel Using Numerical Analysis
,”
J. Inst. Eng. Ser. C
,
105
(
4
), pp.
861
876
.10.1007/s40032-021-00770-z
14.
Zhang
,
Y.
,
Lu
,
X.
,
Lei
,
Z.
,
Han
,
G.
,
Zhu
,
J.
, and
Hu
,
S.
,
2015
, “
Parametric Studying of Low-Profile Vortex Generators Flow Control in an Aggressive Inter-Turbine Duct
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
229
(
8
), pp.
849
861
.10.1177/0957650915600085
15.
Lu
,
X.
,
Ge
,
H.
, and
Zhu
,
J.
,
2016
, “
Flow and Loss Mechanisms Within an Interturbine Duct
,”
J. Propul. Power
,
32
(
3
), pp.
734
742
.10.2514/1.B35927
16.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1994
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME
Paper No. 94-GT-207.10.1115/94-GT-207
17.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1996
, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME
Paper No. 96-GT-139.10.1115/96-GT-139
18.
Steiner
,
M.
,
Peters
,
A.
,
Gatti
,
G.
,
Zscherp
,
C.
,
Engel
,
K.
,
Cabona
,
I.
,
Ramesh
,
A.
,
Sterzinger
,
P. Z.
,
Heitmeir
,
F.
, and
Gottlich
,
E.
,
2018
, “
On Clean Inflow Testing for Intermediate Turbine Ducts
,” Proceedings of Global Power and Propulsion Society,
Montreal, QC, Canada
, May 7–9, Paper No.
GPPS-2018-128
.https://zenodo.org/records/1345568
19.
Norris
,
G.
, and
Dominy
,
R. G.
,
1997
, “
Diffusion Rate Influences on Inter-Turbine Diffusers
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
211
(
3
), pp.
235
242
.10.1243/0957650971537141
20.
Norris
,
G.
,
Dominy
,
R. G.
, and
Smith
,
A. D.
,
1999
, “
Flow Instability Within a Diffusing, Annular S-Shaped Duct
,”
ASME
Paper No. 99-GT-070.10.1115/99-GT-070
21.
Kumar
,
A. L.
, and
Pradeep
,
A. M.
,
2016
, “
Flow Characteristics in an Inter-Turbine Duct Under Off Design Conditions
,”
Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering
, Budapest, Hungary, Aug. 22–23, pp.
1
8
, Paper No.
HTFF-121
.https://avestia.com/MCM2016_Proceedings/files/paper/HTFF/121.pdf
22.
Couey
,
P. T.
,
McKeever
,
C. W.
,
Malak
,
M. F.
,
Balamurugan
,
S.
,
Raju Veeraraghava
,
H.
, and
Dhinagaran
,
R.
,
2010
, “
Computational Study of Geometric Parameter Influence on Aggressive Inter-Turbine Duct Performance
,”
ASME
Paper No. GT2010-23604.10.1115/GT2010-23604
23.
Marn
,
A.
,
Göttlich
,
E.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream a Transonic Turbine Stage: Part I—Time-Averaged Results
,”
ASME
Paper No. GT2007-27405.10.1115/GT2007-27405
24.
Göttlich
,
E.
,
Marn
,
A.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream a Transonic Turbine Stage: Part II—Time-Resolved Results and Surface Flow
,”
ASME
Paper No. GT2007-28069.10.1115/GT2007-28069
25.
Marn
,
A.
,
Göttlich
,
E.
,
Malzacher
,
F.
, and
Pirker
,
H. P.
,
2012
, “
The Effect of Rotor Tip Clearance Size Onto the Separated Flow Through a Super-Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage
,”
ASME J. Turbomach.
, 134(5), p.
051019
.10.1115/1.4004446
26.
Kuchana
,
V.
,
Guntu
,
S.
,
Srinivasan
,
B.
,
Couey
,
P.
,
Mckeever
,
C.
, and
Malak
,
M.
,
2013
, “
Numerical Study on Inter Turbine Ducts With Variable Curvature Distribution
,”
AIAA
Paper No. 2013-3686.10.2514/6.2013-3686
27.
Kuchana
,
V.
,
Balakrishnan
,
N.
, and
Srinivasan
,
B.
,
2020
, “
Design of Curved Annular Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
045001
.10.1115/1.4046233
28.
Florea
,
R.
,
Bertuccioli
,
L.
, and
Tillman
,
G.
,
2007
, “
Flow-Control-Enabled Aggressive Turbine Transition Ducts and Engine System Analysis
,”
J. Propul. Power
,
23
(
4
), pp.
797
803
.10.2514/1.13488
29.
Niu
,
X.
,
Liang
,
C.
,
Jing
,
X.
,
Wei
,
J.
, and
Zhu
,
K.
,
2016
, “
Experimental Investigation of Variable Geometry Turbine Annular Cascade for Marine Gas Turbines
,”
ASME
Paper No. GT2016-56726.10.1115/GT2016-56726
30.
Fu
,
W.
,
Gao
,
J.
,
Liang
,
C.
,
Wang
,
F.
,
Zheng
,
Q.
, and
Zhou
,
E.
,
2016
, “
Experimental Investigation on the Annular Sector Cascade of a High Endwall-Angle Turbine
,”
ASME
Paper No. GT2016-57392.10.1115/GT2016-57392
31.
Ledezma
,
G. A.
,
Allen
,
J.
, and
Bunker
,
R. S.
,
2013
, “
An Experimental and Numerical Investigation Into the Effects of Squealer Blade Tip Modifications on Aerodynamic Performance
,”
ASME
Paper No. TBTS2013-2004.10.1115/TBTS2013-2004
32.
Babu
,
C. V.
,
2008
, “
Secondary and Tip Clearance Flows in an Annular Turbine Impulse Rotor Cascade
,” Ph.D. thesis,
Indian Institute of Technology Madras
, Chennai, Tamil Nadu, India.
33.
Lieblein
,
S.
,
1950
, “
Turning Angle Design Rules for Constant Thickness Circular Arc Inlet Guide Vanes in Axial Annular Flow
,” NASA, Cleveland, OH, Report No.
NASA-TN-2179
.https://ntrs.nasa.gov/citations/19930082830
You do not currently have access to this content.