Abstract

Current data-driven methods for diagnosing gas path faults in aero-engines often rely on large, costly fault sample sets and face challenges related to class imbalances. These include disparities in the quantity of normal and fault data, differences among fault types, and variations in fault severity levels. This paper proposes a novel generative model, TL-GMVAE, which integrates Gaussian mixture models (GMM) with variational auto-encoders (VAE) and incorporates a transfer learning (TL) strategy. Using a large dataset of normal operational data, the VAE learns latent feature mappings of engine behavior and establishes a joint probability distribution across sensor measurements. To account for complexity in engine operating conditions, the GMM is used as the sampling distribution of the VAE. This enhances the model’s ability to represent diverse operating scenarios. The pretrained model is then fine-tuned with a small dataset of gas path fault data, transferring knowledge to fault domains. Each fault-specific TL-GMVAE model serves as an independent generator for synthetic fault samples. The proposed approach is validated using several established classifiers. The impact of different Fault-Normal ratios and imbalances across fault categories on classification accuracy is analyzed. Additionally, the robustness of the method to individual engine variability is evaluated. Results demonstrate that the TL-GMVAE generates high-quality fault samples and significantly improves fault diagnosis accuracy. These findings highlight its potential application in aero-engine health monitoring and fault diagnosis systems.

References

1.
Hanachi
,
H.
,
Mechefske
,
C.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2018
, “
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
1340
1363
.10.1109/TR.2018.2822702
2.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
3.
Hu
,
Y.
,
Miao
,
X.
,
Si
,
Y.
,
Pan
,
E.
, and
Zio
,
E.
,
2022
, “
Prognostics and Health Management: A Review From the Perspectives of Design, Development and Decision
,”
Reliab. Eng. Syst. Saf.
,
217
, p.
108063
.10.1016/j.ress.2021.108063
4.
Tolani
,
D.
,
Yasar
,
M.
,
Shin
,
C.
, and
Ray
,
A.
,
2005
, “
Anomaly Detection for Health Management of Aircraft Gas Turbine Engines
,”
Proceedings of the American Control Conference,
Portland, OR, June 8–10,
pp.
459
464
.10.1109/ACC.2005.1469978
5.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Netw.
,
76
, pp.
106
121
.10.1016/j.neunet.2016.01.003
6.
Pourbabaee
,
B.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2016
, “
Sensor Fault Detection, Isolation, and Identification Using Multiple-Model-Based Hybrid Kalman Filter for Gas Turbine Engines
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1184
1200
.10.1109/TCST.2015.2480003
7.
Lu
,
F.
,
Li
,
Z.
,
Huang
,
J.
, and
Jia
,
M.
,
2020
, “
Hybrid State Estimation for Aircraft Engine Anomaly Detection and Fault Accommodation
,”
AIAA J.
,
58
(
4
), pp.
1748
1762
.10.2514/1.J059044
8.
Jin
,
P.
,
Lu
,
F.
,
Huang
,
J.
,
Kong
,
X.
, and
Fan
,
M.
,
2021
, “
Life Cycle Gas Path Performance Monitoring With Control Loop Parameters Uncertainty for Aeroengine
,”
Aerosp. Sci. Technol.
,
115
, p.
106775
.10.1016/j.ast.2021.106775
9.
Chen
,
Z.
,
Gryllias
,
K.
, and
Li
,
W.
,
2020
, “
Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
,”
IEEE Trans. Ind. Inform.
,
16
(
1
), pp.
339
349
.10.1109/TII.2019.2917233
10.
Wang
,
J.
,
Li
,
S.
,
An
,
Z.
,
Jiang
,
X.
,
Qian
,
W.
, and
Ji
,
S.
,
2019
, “
Batch-Normalized Deep Neural Networks for Achieving Fast Intelligent Fault Diagnosis of Machines
,”
Neurocomputing
,
329
, pp.
53
65
.10.1016/j.neucom.2018.10.049
11.
Zhao
,
J.
,
Li
,
Y.-G.
, and
Sampath
,
S.
,
2023
, “
A Hierarchical Structure Built on Physical and Data-Based Information for Intelligent Aero-Engine Gas Path Diagnostics
,”
Appl. Energy
,
332
, p.
120520
.10.1016/j.apenergy.2022.120520
12.
Huang
,
D.
,
Zhou
,
D.
,
Wei
,
X.
,
Wang
,
H.
, and
Zhao
,
X.
,
2023
, “
Gas Path Deterioration Observation Based on Stochastic Dynamics for Reliability Assessment of Aeroengines
,”
Reliab. Eng. Syst. Saf.
,
238
, p.
109458
.10.1016/j.ress.2023.109458
13.
Lu
,
F.
,
Wu
,
J.
,
Huang
,
J.
, and
Qiu
,
X.
,
2020
, “
Restricted-Boltzmann-Based Extreme Learning Machine for Gas Path Fault Diagnosis of Turbofan Engine
,”
IEEE Trans. Ind. Inform.
,
16
(
2
), pp.
959
968
.10.1109/TII.2019.2921032
14.
Li
,
J.
, and
Ying
,
Y.
,
2018
, “
A Method to Improve the Robustness of Gas Turbine Gas-Path Fault Diagnosis Against Sensor Faults
,”
IEEE Trans. Reliab.
,
67
(
1
), pp.
3
12
.10.1109/TR.2017.2695482
15.
Yang
,
X.
,
Bai
,
M.
,
Liu
,
J.
,
Liu
,
J.
, and
Yu
,
D.
,
2021
, “
Gas Path Fault Diagnosis for Gas Turbine Group Based on Deep Transfer Learning
,”
Measurement
,
181
, p.
109631
.10.1016/j.measurement.2021.109631
16.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2014
, “
A Component Map Tuning Method for Performance Prediction and Diagnostics of Gas Turbine Compressors
,”
Appl. Energy
,
135
, pp.
572
585
.10.1016/j.apenergy.2014.08.115
17.
Pan
,
T.
,
Chen
,
J.
,
Zhang
,
T.
,
Liu
,
S.
,
He
,
S.
, and
Lv
,
H.
,
2022
, “
Generative Adversarial Network in Mechanical Fault Diagnosis Under Small Sample: A Systematic Review on Applications and Future Perspectives
,”
ISA Trans.
,
128
, pp.
1
10
.10.1016/j.isatra.2021.11.040
18.
Liu
,
C.
,
Antypenko
,
R.
,
Sushko
,
I.
, and
Zakharchenko
,
O.
,
2022
, “
Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE
,”
IEEE Trans. Reliab.
,
71
(
2
), pp.
1000
1010
.10.1109/TR.2022.3164877
19.
Zhang
,
T.
,
Chen
,
C.
,
Wang
,
D.
,
Guo
,
J.
, and
Song
,
B.
,
2023
, “
A VAE-Based User Preference Learning and Transfer Framework for Cross-Domain Recommendation
,”
IEEE Trans. Knowl. Data Eng.
,
35
(
10
), pp.
10383
10396
.10.1109/TKDE.2023.3253168
20.
Zhang
,
T.
,
Chen
,
J.
,
Li
,
F.
,
Pan
,
T.
, and
He
,
S.
,
2021
, “
A Small Sample Focused Intelligent Fault Diagnosis Scheme of Machines Via Multimodules Learning With Gradient Penalized Generative Adversarial Networks
,”
IEEE Trans. Ind. Electron.
,
68
(
10
), pp.
10130
10141
.10.1109/TIE.2020.3028821
21.
Li
,
R.
,
Li
,
S.
,
Xu
,
K.
,
Zeng
,
M.
,
Li
,
X.
,
Gu
,
J.
, and
Chen
,
Y.
,
2023
, “
Auxiliary Generative Mutual Adversarial Networks for Class-Imbalanced Fault Diagnosis Under Small Samples
,”
Chin. J. Aeronaut.
,
36
(
9
), pp.
464
478
. 10.1016/j.cja.2022.12.015
22.
Li
,
C.
,
Li
,
S.
,
Zhang
,
A.
,
He
,
Q.
,
Liao
,
Z.
, and
Hu
,
J.
,
2021
, “
Meta-Learning for Few-Shot Bearing Fault Diagnosis Under Complex Working Conditions
,”
Neurocomputing
,
439
, pp.
197
211
.10.1016/j.neucom.2021.01.099
23.
Zhong
,
S.
,
Fu
,
S.
, and
Lin
,
L.
,
2019
, “
A Novel Gas Turbine Fault Diagnosis Method Based on Transfer Learning With CNN
,”
Measurement
,
137
, pp.
435
453
.10.1016/j.measurement.2019.01.022
24.
Shao
,
S.
,
McAleer
,
S.
,
Yan
,
R.
, and
Baldi
,
P.
,
2019
, “
Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2446
2455
.10.1109/TII.2018.2864759
25.
Ding
,
H.
,
Sun
,
Y.
,
Huang
,
N.
,
Shen
,
Z.
,
Wang
,
Z.
,
Iftekhar
,
A.
, and
Cui
,
X.
,
2023
, “
RVGAN-TL: A Generative Adversarial Networks and Transfer Learning-Based Hybrid Approach for Imbalanced Data Classification
,”
Inf. Sci.
,
629
, pp.
184
203
.10.1016/j.ins.2023.01.147
26.
He
,
W.
,
Chen
,
J.
,
Zhou
,
Y.
,
Liu
,
X.
,
Chen
,
B.
, and
Guo
,
B.
,
2022
, “
An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning Under Variable Working Conditions
,”
Sensors
,
22
(
23
), p.
9175
.10.3390/s22239175
27.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,”10.48550/arXiv.1312.6114.
28.
Meskin
,
N.
,
Naderi
,
E.
, and
Khorasani
,
K.
,
2013
, “
A Multiple Model-Based Approach for Fault Diagnosis of Jet Engines
,”
IEEE Trans. Control Syst. Technol.
,
21
(
1
), pp.
254
262
.10.1109/TCST.2011.2177981
29.
Naderi
,
E.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2012
, “
Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011602
.10.1115/1.4004152
30.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
31.
Simon
,
D. L.
, and
Litt
,
J. S.
,
2011
, “
A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071603
.10.1115/1.4002318
32.
Wang
,
K.
,
Guo
,
Y.
,
Zhao
,
W.
,
Zhou
,
Q.
, and
Guo
,
P.
,
2022
, “
Gas Path Fault Detection and Isolation for Aero-Engine Based on LSTM-DAE Approach Under Multiple-Model Architecture
,”
Measurement
,
202
, p.
111875
.10.1016/j.measurement.2022.111875
33.
Sadough Vanini
,
Z. N.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2014
, “
Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using Autoassociative Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091603
.10.1115/1.4027215
34.
Petersen
,
P.
, and
Voigtlaender
,
F.
,
2018
, “
Optimal Approximation of Piecewise Smooth Functions Using Deep ReLU Neural Networks
,”
Neural Netw.
,
108
, pp.
296
330
.10.1016/j.neunet.2018.08.019
35.
Kaplan
,
J.
,
McCandlish
,
S.
,
Henighan
,
T.
,
Brown
,
T. B.
,
Chess
,
B.
,
Child
,
R.
,
Gray
,
S.
,
Radford
,
A.
,
Wu
,
J.
, and
Amodei
,
D.
,
2020
, “
Scaling Laws for Neural Language Models
,” arXiv preprint
arXiv:2001.08361
10.48550/arXiv.2001.08361.
You do not currently have access to this content.